Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Torque converter
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Theory of operation=== Torque converter equations of motion are governed by [[Leonhard Euler]]'s eighteenth century [[Euler's pump and turbine equation|turbomachine equation]]: :<math>\tau = \sum \left [ r \times \frac{d}{dt} \left ( m \cdot v \right ) \right ]</math> The equation expands to include the fifth power of radius; as a result, torque converter properties are very dependent on the size of the device. Mathematical formulations for the torque converter are available from several authors. <ref name="Bond Graph Modeling and Computer Simulation of Automotive Torque Converters" > {{cite journal | last1 = Hrovat | first1 = D | last2 = Tobler | first2 = W | date = 1985 | title = Bond Graph Modeling and Computer Simulation of Automotive Torque Converters | url = https://doi.org/10.1016/0016-0032(85)90067-5 | journal = Journal of the Franklin Institute | volume = 319 | pages = 93-114 | doi = 10.1016/0016-0032(85)90067-5 | access-date = | url-access = subscription }} </ref> <ref name="Dynamic Models for Torque Converter Equipped Vehicles"> {{cite journal | last1 = Kotwicki | first1 = A. J. | date = 1982 | title = Dynamic Models for Torque Converter Equipped Vehicles | url = https://doi.org/10.4271/820393 | journal = SAE Technical Paper Series | doi = 10.4271/820393 | url-access = subscription }} </ref> Hrovat derived the equations of the pump, turbine, stator, and conservation of energy. Four first-order differential equations can define the performance of the torque converter. <math> I_i \dot{\omega_i} + \rho S_i \dot{Q} = -\rho (\omega_i R_i^2 + R_i \frac{Q}{A}\tan{\alpha_i} - \omega_\mathrm{s} R_\mathrm{s}^2 - R_\mathrm{s} \frac{Q}{A} \tan{\alpha_\mathrm{s}} ) Q + \tau_i </math> <math> I_\mathrm{t} \dot{\omega_\mathrm{t}} + \rho S_\mathrm{t} \dot{Q} = -\rho (\omega_\mathrm{t} R_\mathrm{t}^2 + R_\mathrm{t} \frac{Q}{A}\tan{\alpha_\mathrm{t}} - \omega_i R_i^2 - R_i \frac{Q}{A} \tan{\alpha_i} ) Q + \tau_\mathrm{t} </math> <math> I_\mathrm{s} \dot{\omega_\mathrm{s}} + \rho S_\mathrm{s} \dot{Q} = -\rho (\omega_\mathrm{s} R_\mathrm{s}^2 + R_\mathrm{s} \frac{Q}{A}\tan{\alpha_\mathrm{s}} - \omega_\mathrm{t} R_\mathrm{t}^2 - R_\mathrm{t} \frac{Q}{A} \tan{\alpha_\mathrm{t}} ) Q + \tau_\mathrm{s} </math> <math> \rho (S_\mathrm{p} \dot{w_\mathrm{p}} + S_\mathrm{t} \dot{w_\mathrm{t}}+ S_\mathrm{s} \dot{w_\mathrm{s}}) + \rho \frac{L_\mathrm{f}}{A} \dot{Q} = \rho (R_\mathrm{p}^2 w_\mathrm{p}^2 + R_\mathrm{t}^2 w_\mathrm{t}^2 + R_\mathrm{s}^2 w_\mathrm{s}^2 - R_\mathrm{s}^2 w_\mathrm{p} w_\mathrm{s} - R_\mathrm{p}^2 w_\mathrm{t} w_\mathrm{p} - R_\mathrm{t}^2 w_\mathrm{s} w_\mathrm{t}) + w_\mathrm{p} \frac{Q}{A} \rho (R_\mathrm{p} \tan{a_\mathrm{p}} - R_\mathrm{s} \tan{a_\mathrm{s}}) + w_\mathrm{t} \frac{Q}{A} \rho (R_\mathrm{t} \tan{a_\mathrm{t}} - R_\mathrm{p} \tan{a_\mathrm{p}}) + w_\mathrm{s} \frac{Q}{A} \rho (R_\mathrm{s} \tan{a_\mathrm{s}} - R_\mathrm{t} \tan{a_\mathrm{t}}) - P_L </math> where * <math>\rho</math> is density * <math>A</math> is flow area * <math>R_\mathrm{p}</math> is pump radius * <math>R_\mathrm{t}</math> is turbine radius * <math>R_\mathrm{s}</math> is stator radius * <math>a_\mathrm{p}</math> is pump exit angle * <math>a_\mathrm{t}</math> is turbine exit angle * <math>a_\mathrm{s}</math> is stator exit angle * <math>I</math> is inertia * <math>L_\mathrm{f}</math> is fluid inertia length A simpler correlation is provided by Kotwicki.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)