Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Transcendental number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Proofs for specific numbers== ===A proof that {{mvar|e}} is transcendental=== The first proof that [[E (mathematical constant)|the base of the natural logarithms, {{mvar|e}}]], is transcendental dates from 1873. We will now follow the strategy of [[David Hilbert]] (1862β1943) who gave a simplification of the original proof of [[Charles Hermite]]. The idea is the following: Assume, for purpose of [[Proof by contradiction|finding a contradiction]], that {{mvar|e}} is algebraic. Then there exists a finite set of integer coefficients {{math|''c''<sub>0</sub>, ''c''<sub>1</sub>, ..., ''c<sub>n</sub>''}} satisfying the equation: <math display=block> c_{0} + c_{1}e + c_{2} e^{2} + \cdots + c_{n} e^{n} = 0, \qquad c_0, c_n \neq 0 ~. </math> It is difficult to make use of the integer status of these coefficients when multiplied by a power of the irrational {{mvar|e}}, but we can absorb those powers into an integral which βmostlyβ will assume integer values. For a positive integer {{mvar|k}}, define the polynomial <math display=block> f_k(x) = x^{k} \left [(x-1)\cdots(x-n) \right ]^{k+1}, </math> and multiply both sides of the above equation by <math display=block> \int^{\infty}_{0} f_k(x) \, e^{-x}\, \mathrm{d}x\ , </math> to arrive at the equation: <math display=block> c_0 \left (\int^{\infty}_{0} f_k(x) e^{-x} \,\mathrm{d}x \right) + c_1 e \left( \int^{\infty}_{0} f_k(x) e^{-x} \,\mathrm{d}x \right ) + \cdots + c_{n}e^{n} \left( \int^{\infty}_{0} f_k(x) e^{-x} \,\mathrm{d}x \right) = 0 ~. </math> By splitting respective domains of integration, this equation can be written in the form <math display=block> P + Q = 0 </math> where <math display=block> \begin{align} P &= c_{0} \left( \int^{\infty}_{0} f_k(x) e^{-x} \,\mathrm{d}x \right) + c_{1} e \left( \int^{\infty}_{1} f_k(x) e^{-x} \,\mathrm{d}x \right) + c_{2} e^{2} \left( \int^{\infty}_{2} f_k(x) e^{-x} \,\mathrm{d}x \right) + \cdots + c_{n} e^{n} \left( \int^{\infty}_{n} f_k(x) e^{-x} \,\mathrm{d}x \right) \\ Q &= c_{1} e \left(\int^{1}_{0} f_k(x) e^{-x} \,\mathrm{d}x \right) + c_{2}e^{2} \left( \int^{2}_{0} f_k(x) e^{-x} \,\mathrm{d}x \right) + \cdots+c_{n} e^{n} \left( \int^{n}_{0} f_k(x) e^{-x} \,\mathrm{d}x \right) \end{align} </math> Here {{mvar|P}} will turn out to be an integer, but more importantly it grows quickly with {{mvar|k}}. ====Lemma 1==== ''There are arbitrarily large {{mvar|k}} such that <math>\ \tfrac{P}{k!}\ </math> is a non-zero integer.'' '''Proof.''' Recall the standard integral (case of the [[Gamma function]]) <math display=block> \int^{\infty}_{0} t^{j} e^{-t} \,\mathrm{d}t = j! </math> valid for any [[natural number]] <math>j</math>. More generally, : if <math> g(t) = \sum_{j=0}^m b_j t^j </math> then <math> \int^{\infty}_{0} g(t) e^{-t} \,\mathrm{d}t = \sum_{j=0}^m b_j j! </math>. This would allow us to compute <math>P</math> exactly, because any term of <math>P</math> can be rewritten as <math display=block> c_{a} e^{a} \int^{\infty}_{a} f_k(x) e^{-x} \,\mathrm{d}x = c_{a} \int^{\infty}_{a} f_k(x) e^{-(x-a)} \,\mathrm{d}x = \left\{ \begin{aligned} t &= x-a \\ x &= t+a \\ \mathrm{d}x &= \mathrm{d}t \end{aligned} \right\} = c_a \int_0^\infty f_k(t+a) e^{-t} \,\mathrm{d}t </math> through a [[Integration by substitution|change of variables]]. Hence <math display="block"> P = \sum_{a=0}^n c_a \int_0^\infty f_k(t+a) e^{-t} \,\mathrm{d}t = \int_0^\infty \biggl( \sum_{a=0}^n c_a f_k(t+a) \biggr) e^{-t} \,\mathrm{d}t </math> That latter sum is a polynomial in <math>t</math> with integer coefficients, i.e., it is a linear combination of powers <math>t^j</math> with integer coefficients. Hence the number <math>P</math> is a linear combination (with those same integer coefficients) of factorials <math>j!</math>; in particular <math>P</math> is an integer. Smaller factorials divide larger factorials, so the smallest <math>j!</math> occurring in that linear combination will also divide the whole of <math>P</math>. We get that <math>j!</math> from the lowest power <math>t^j</math> term appearing with a nonzero coefficient in <math>\textstyle \sum_{a=0}^n c_a f_k(t+a) </math>, but this smallest exponent <math>j</math> is also the [[Multiplicity (mathematics)#Multiplicity of a root of a polynomial|multiplicity]] of <math>t=0</math> as a root of this polynomial. <math>f_k(x)</math> is chosen to have multiplicity <math>k</math> of the root <math>x=0</math> and multiplicity <math>k+1</math> of the roots <math>x=a</math> for <math>a=1,\dots,n</math>, so that smallest exponent is <math>t^k</math> for <math>f_k(t)</math> and <math>t^{k+1}</math> for <math>f_k(t+a)</math> with <math> a>0 </math>. Therefore <math>k!</math> divides <math>P</math>. To establish the last claim in the lemma, that <math>P</math> is nonzero, it is sufficient to prove that <math>k+1</math> does not divide <math>P</math>. To that end, let <math>k+1</math> be any [[prime number|prime]] larger than <math>n</math> and <math>|c_0|</math>. We know from the above that <math>(k+1)!</math> divides each of <math> \textstyle c_a \int_0^\infty f_k(t+a) e^{-t} \,\mathrm{d}t </math> for <math> 1 \leqslant a \leqslant n </math>, so in particular all of those ''are'' divisible by <math>k+1</math>. It comes down to the first term <math> \textstyle c_0 \int_0^\infty f_k(t) e^{-t} \,\mathrm{d}t </math>. We have (see [[falling and rising factorials]]) <math display=block> f_k(t) = t^k \bigl[ (t-1) \cdots (t-n) \bigr]^{k+1} = \bigl[ (-1)^{n}(n!) \bigr]^{k+1} t^k + \text{higher degree terms} </math> and those higher degree terms all give rise to factorials <math>(k+1)!</math> or larger. Hence <math display=block> P \equiv c_0 \int_0^\infty f_k(t) e^{-t} \,\mathrm{d}t \equiv c_0 \bigl[ (-1)^{n}(n!) \bigr]^{k+1} k! \pmod{(k+1)} </math> That right hand side is a product of nonzero integer factors less than the prime <math>k+1</math>, therefore that product is not divisible by <math>k+1</math>, and the same holds for <math>P</math>; in particular <math>P</math> cannot be zero. ====Lemma 2==== ''For sufficiently large {{mvar|k}}, <math>\left| \tfrac{Q}{k!} \right| <1</math>.'' '''Proof.''' Note that <math display=block>\begin{align} f_k e^{-x} &= x^{k} \left[ (x-1)(x-2) \cdots (x-n) \right]^{k+1} e^{-x}\\ &= \left (x(x-1)\cdots(x-n) \right)^k \cdot \left( (x-1) \cdots (x-n) e^{-x} \right) \\ &= u(x)^k \cdot v(x) \end{align}</math> where {{math|''u''(''x''), ''v''(''x'')}} are [[Continuous function|continuous functions]] of {{mvar|x}} for all {{mvar|x}}, so are bounded on the interval {{math|[0, ''n'']}}. That is, there are constants {{math|''G'', ''H'' > 0}} such that <math display=block>\ \left| f_k e^{-x} \right| \leq |u(x)|^k \cdot |v(x)| < G^k H \quad \text{ for } 0 \leq x \leq n ~.</math> So each of those integrals composing {{mvar|Q}} is bounded, the worst case being <math display=block>\left| \int_{0}^{n} f_{k} e^{-x}\ \mathrm{d}\ x \right| \leq \int_{0}^{n} \left| f_{k} e^{-x} \right| \ \mathrm{d}\ x \leq \int_{0}^{n}G^k H\ \mathrm{d}\ x = n G^k H ~.</math> It is now possible to bound the sum {{mvar|Q}} as well: <math display=block> |Q| < G^{k} \cdot n H \left( |c_1|e+|c_2|e^2 + \cdots+|c_n|e^{n} \right) = G^k \cdot M\ ,</math> where {{mvar|M}} is a constant not depending on {{mvar|k}}. It follows that <math display=block>\ \left| \frac{Q}{k!} \right| < M \cdot \frac{G^k}{k!} \to 0 \quad \text{ as } k \to \infty\ ,</math> finishing the proof of this lemma. ====Conclusion==== Choosing a value of {{mvar|k}} that satisfies both lemmas leads to a non-zero integer <math>\left(\tfrac{P}{k!}\right)</math> added to a vanishingly small quantity <math>\left(\tfrac{Q}{k!}\right)</math> being equal to zero: an impossibility. It follows that the original assumption, that {{mvar|e}} can satisfy a polynomial equation with integer coefficients, is also impossible; that is, {{mvar|e}} is transcendental. ===The transcendence of {{mvar|Ο}}=== A similar strategy, different from [[Ferdinand von Lindemann|Lindemann]]'s original approach, can be used to show that the [[Pi|number {{mvar|Ο}}]] is transcendental. Besides the [[gamma-function]] and some estimates as in the proof for {{mvar|e}}, facts about [[symmetric polynomial]]s play a vital role in the proof. For detailed information concerning the proofs of the transcendence of {{mvar|Ο}} and {{mvar|e}}, see the references and external links.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)