Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Transpose
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Properties === Let {{math|'''A'''}} and {{math|'''B'''}} be matrices and {{mvar|c}} be a [[Scalar (mathematics)|scalar]]. * <math>\left(\mathbf{A}^\operatorname{T} \right)^\operatorname{T} = \mathbf{A}.</math> *:The operation of taking the transpose is an [[Involution (mathematics)|involution]] (self-[[Inverse matrix|inverse]]). *<math>\left(\mathbf{A} + \mathbf{B}\right)^\operatorname{T} = \mathbf{A}^\operatorname{T} + \mathbf{B}^\operatorname{T}.</math> *:The transpose respects [[Matrix addition|addition]]. *<math>\left(c \mathbf{A}\right)^\operatorname{T} = c (\mathbf{A}^\operatorname{T}).</math> *:The transpose of a scalar is the same scalar. Together with the preceding property, this implies that the transpose is a [[linear map]] from the [[Vector space|space]] of {{math|{{nowrap|''m'' Γ ''n''}}}} matrices to the space of the {{math|{{nowrap|''n'' Γ ''m''}}}} matrices. *<math>\left(\mathbf{A B}\right)^\operatorname{T} = \mathbf{B}^\operatorname{T} \mathbf{A}^\operatorname{T}.</math> *:The order of the factors reverses. By induction, this result extends to the general case of multiple matrices, so *::{{math|('''A'''<sub>1</sub>'''A'''<sub>2</sub>...'''A'''<sub>''k''β1</sub>'''A'''<sub>''k''</sub>)<sup>T</sup> {{=}} '''A'''<sub>''k''</sub><sup>T</sup>'''A'''<sub>''k''β1</sub><sup>T</sup>β¦'''A'''<sub>2</sub><sup>T</sup>'''A'''<sub>1</sub><sup>T</sup>}}. *<math>\det \left(\mathbf{A}^\operatorname{T}\right) = \det(\mathbf{A}).</math> *:The [[determinant]] of a square matrix is the same as the determinant of its transpose. *The [[dot product]] of two column vectors {{math|'''a'''}} and {{math|'''b'''}} can be computed as the single entry of the matrix product<math display=block>\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^{\operatorname{T}} \mathbf{b}.</math> *If {{math|'''A'''}} has only real entries, then {{math|'''A'''<sup>T</sup>'''A'''}} is a [[positive-semidefinite matrix]]. *<math> \left(\mathbf{A}^\operatorname{T} \right)^{-1} = \left(\mathbf{A}^{-1} \right)^\operatorname{T}.</math> *: The transpose of an invertible matrix is also invertible, and its inverse is the transpose of the inverse of the original matrix.<br>The notation {{math|'''A'''<sup>βT</sup>}} is sometimes used to represent either of these equivalent expressions. *If {{math|'''A'''}} is a square matrix, then its [[Eigenvalue, eigenvector and eigenspace|eigenvalues]] are equal to the eigenvalues of its transpose, since they share the same [[characteristic polynomial]]. *<math> \left(\mathbf A\mathbf a\right) \cdot \mathbf b =\mathbf a \cdot \mathbf \left(A^T\mathbf b\right)</math> for two column vectors <math> \mathbf a, \mathbf b </math> and the standard [[dot product]]. *Over any field <math>k</math>, a square matrix <math>\mathbf{A}</math> is [[matrix similarity|similar]] to <math>\mathbf{A}^\operatorname{T}</math>. *:This implies that <math>\mathbf{A}</math> and <math>\mathbf{A}^\operatorname{T}</math> have the same [[invariant factors]], which implies they share the same minimal polynomial, characteristic polynomial, and eigenvalues, among other properties. *:A proof of this property uses the following two observations. *:* Let <math>\mathbf{A}</math> and <math>\mathbf{B}</math> be <math>n\times n</math> matrices over some base field <math>k</math> and let <math>L</math> be a [[field extension]] of <math>k</math>. If <math>\mathbf{A}</math> and <math>\mathbf{B}</math> are similar as matrices over <math>L</math>, then they are similar over <math>k</math>. In particular this applies when <math>L</math> is the [[algebraic closure]] of <math>k</math>. *:*If <math>\mathbf{A}</math> is a matrix over an algebraically closed field in [[Jordan normal form]] with respect to some basis, then <math>\mathbf{A}</math> is similar to <math>\mathbf{A}^\operatorname{T}</math>. This further reduces to proving the same fact when <math>\mathbf{A}</math> is a single Jordan block, which is a straightforward exercise.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)