Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Trapezohedron
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Star trapezohedron== A '''star {{math|''p''/''q''}}-trapezohedron''' (where {{math|2 β€ ''q'' < '''1'''''p''}}) is defined by a [[Regular skew polygon|regular zig-zag skew]] [[Star polygon|star {{math|'''2'''''p''/''q''}}-gon]] base, two symmetric [[Apex (geometry)|apices]] with no [[Degrees of freedom|degree of freedom]] right above and right below the base, and [[quadrilateral]] faces connecting each pair of [[Adjacent side (polygon)|adjacent]] basal edges to one apex. A star {{math|''p''/''q''}}-trapezohedron has two apical vertices on its polar axis, and {{math|2''p''}} basal vertices in two regular {{mvar|p}}-gonal rings. It has {{math|'''2'''''p''}} [[Congruence (geometry)|congruent]] [[Kite (geometry)|kite]] faces, and it is [[Isohedral figure|isohedral]]. Such a star {{math|''p''/''q''}}-trapezohedron is a ''self-intersecting'', ''crossed'', or ''non-convex'' form. It exists for any regular zig-zag skew star {{math|'''2'''''p''/''q''}}-gon base (where {{math|2 β€ ''q'' < '''1'''''p''}}). But if {{math|{{sfrac|''p''|''q''}} < {{sfrac|3|2}}}}, then {{math|(''p'' β ''q''){{sfrac|360Β°|''p''}} < {{sfrac|''q''|2}}{{sfrac|360Β°|''p''}}}}, so the dual star antiprism (of the star trapezohedron) cannot be uniform (i.e. cannot have equal edge lengths); and if {{math|1={{sfrac|''p''|''q''}} = {{sfrac|3|2}}}}, then {{math|1=(''p'' β ''q''){{sfrac|360Β°|''p''}} = {{sfrac|''q''|2}}{{sfrac|360Β°|''p''}}}}, so the dual star antiprism must be flat, thus degenerate, to be uniform. A [[Dual uniform polyhedron|dual-uniform]] star {{math|''p''/''q''}}-trapezohedron has [[Coxeter-Dynkin diagram]] {{CDD|node_fh|2x|node_fh|p|rat|q|node_fh}}. {| class=wikitable |+ style="text-align:center;"|Dual-uniform star ''p''/''q''-trapezohedra up to ''p'' = 12 |- align=center !5/2||5/3||7/2||7/3||7/4||8/3||8/5||9/2||9/4||9/5 |- align=center |[[Image:5-2_deltohedron.png|50px]] |[[Image:5-3_deltohedron.png|50px]] |[[Image:7-2_deltohedron.png|60px]] |[[Image:7-3_deltohedron.png|60px]] |[[Image:7-4_deltohedron.png|60px]] |[[Image:8-3_deltohedron.png|60px]] |[[Image:8-5_deltohedron.png|60px]] |[[Image:9-2_deltohedron.png|60px]] |[[Image:9-4_deltohedron.png|60px]] |[[Image:9-5_deltohedron.png|60px]] |- align=center valign="top" |{{CDD|node_fh|2x|node_fh|5|rat|2x|node_fh}} |{{CDD|node_fh|2x|node_fh|5|rat|3x|node_fh}} |{{CDD|node_fh|2x|node_fh|7|rat|2x|node_fh}} |{{CDD|node_fh|2x|node_fh|7|rat|3x|node_fh}} |{{CDD|node_fh|2x|node_fh|7|rat|4|node_fh}} |{{CDD|node_fh|2x|node_fh|8|rat|3x|node_fh}} |{{CDD|node_fh|2x|node_fh|8|rat|5|node_fh}} |{{CDD|node_fh|2x|node_fh|9|rat|2x|node_fh}} |{{CDD|node_fh|2x|node_fh|9|rat|4|node_fh}} |{{CDD|node_fh|2x|node_fh|9|rat|5|node_fh}} |} {| class=wikitable |- align=center !10/3||11/2||11/3||11/4||11/5||11/6||11/7||12/5||12/7 |- align=center |[[Image:10-3_deltohedron.png|60px]] |[[Image:11-2_deltohedron.png|60px]] |[[Image:11-3_deltohedron.png|60px]] |[[Image:11-4_deltohedron.png|60px]] |[[Image:11-5_deltohedron.png|60px]] |[[Image:11-6_deltohedron.png|60px]] |[[Image:11-7_deltohedron.png|60px]] |[[Image:12-5_deltohedron.png|60px]] |[[Image:12-7_deltohedron.png|60px]] |- align=center valign="top" |{{CDD|node_fh|2x|node_fh|10|rat|3x|node_fh}} |{{CDD|node_fh|2x|node_fh|11|rat|2x|node_fh}} |{{CDD|node_fh|2x|node_fh|11|rat|3x|node_fh}} |{{CDD|node_fh|2x|node_fh|11|rat|4|node_fh}} |{{CDD|node_fh|2x|node_fh|11|rat|5|node_fh}} |{{CDD|node_fh|2x|node_fh|11|rat|6|node_fh}} |{{CDD|node_fh|2x|node_fh|11|rat|7|node_fh}} |{{CDD|node_fh|2x|node_fh|12|rat|5|node_fh}} |{{CDD|node_fh|2x|node_fh|12|rat|7|node_fh}} |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)