Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Trapezoidal rule
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Error analysis== [[File:Trapezium2.gif|right|thumb|An animation showing how the trapezoidal rule approximation improves with more strips for an interval with <math>a=2</math> and <math>b=8</math>. As the number of intervals <math>N</math> increases, so too does the accuracy of the result.]] The error of the composite trapezoidal rule is the difference between the value of the integral and the numerical result: <math display="block"> \text{E} = \int_a^b f(x)\,dx - \frac{b-a}{N} \left[ {f(a) + f(b) \over 2} + \sum_{k=1}^{N-1} f \left( a+k \frac{b-a}{N} \right) \right]</math> There exists a number ''ξ'' between ''a'' and ''b'', such that<ref>{{harvtxt|Atkinson|1989|loc=equation (5.1.7)}}</ref> <math display="block"> \text{E} = -\frac{(b-a)^3}{12N^2} f''(\xi)</math> It follows that if the integrand is [[concave up]] (and thus has a positive second derivative), then the error is negative and the trapezoidal rule overestimates the true value. This can also be seen from the geometric picture: the trapezoids include all of the area under the curve and extend over it. Similarly, a [[concave-down]] function yields an underestimate because area is unaccounted for under the curve, but none is counted above. If the interval of the integral being approximated includes an [[inflection point]], the sign of the error is harder to identify. An asymptotic error estimate for ''N'' → ∞ is given by <math display="block"> \text{E} = -\frac{(b-a)^2}{12N^2} \big[ f'(b)-f'(a) \big] + O(N^{-3}). </math> Further terms in this error estimate are given by the Euler–Maclaurin summation formula. Several techniques can be used to analyze the error, including:<ref name="w0223">{{Harv|Weideman|2002|loc=p. 23, section 2}}</ref> #[[Fourier series]] #[[Residue calculus]] #[[Euler–Maclaurin summation formula]]<ref>{{harvtxt|Atkinson|1989|loc=equation (5.1.9)}}</ref><ref>{{harvtxt|Atkinson|1989|loc=p. 285}}</ref> #[[Polynomial interpolation]]<ref>{{harvtxt|Burden|Faires|2011|p=194}} </ref> It is argued that the speed of convergence of the trapezoidal rule reflects and can be used as a definition of classes of smoothness of the functions.<ref name="rs90" /> === Proof === First suppose that <math>h=\frac{b-a}{N}</math> and <math>a_k=a+(k-1)h</math>. Let <math display="block"> g_k(t) = \frac{1}{2} t[f(a_k)+f(a_k+t)] - \int_{a_k}^{a_k+t} f(x) \, dx</math> be the function such that <math> |g_k(h)| </math> is the error of the trapezoidal rule on one of the intervals, <math> [a_k, a_k+h] </math>. Then <math display="block"> {dg_k \over dt}={1 \over 2}[f(a_k)+f(a_k+t)]+{1\over2}t\cdot f'(a_k+t)-f(a_k+t),</math> and <math display="block"> {d^2g_k \over dt^2}={1\over 2}t\cdot f''(a_k+t).</math> Now suppose that <math> \left| f''(x) \right| \leq \left| f''(\xi) \right|, </math> which holds if <math> f </math> is sufficiently smooth. It then follows that <math display="block"> \left| f''(a_k+t) \right| \leq f''(\xi)</math> which is equivalent to <math> -f''(\xi) \leq f''(a_k+t) \leq f''(\xi)</math>, or <math> -\frac{f''(\xi)t}{2} \leq g_k''(t) \leq \frac{f''(\xi)t}{2}.</math> Since <math> g_k'(0)=0</math> and <math> g_k(0)=0</math>, <math display="block"> \int_0^t g_k''(x) dx = g_k'(t)</math> and <math display="block"> \int_0^t g_k'(x) dx = g_k(t).</math> Using these results, we find <math display="block"> -\frac{f''(\xi)t^2}{4} \leq g_k'(t) \leq \frac{f''(\xi)t^2}{4}</math> and <math display="block"> -\frac{f''(\xi)t^3}{12} \leq g_k(t) \leq \frac{f''(\xi)t^3}{12}</math> Letting <math> t = h </math> we find <math display="block"> -\frac{f''(\xi)h^3}{12} \leq g_k(h) \leq \frac{f''(\xi)h^3}{12}.</math> Summing all of the local error terms we find <math display="block"> \sum_{k=1}^{N} g_k(h) = \frac{b-a}{N} \left[ {f(a) + f(b) \over 2} + \sum_{k=1}^{N-1} f \left( a+k \frac{b-a}{N} \right) \right] - \int_a^b f(x)dx.</math> But we also have <math display="block"> - \sum_{k=1}^N \frac{f''(\xi)h^3}{12} \leq \sum_{k=1}^N g_k(h) \leq \sum_{k=1}^N \frac{f''(\xi)h^3}{12}</math> and <math display="block"> \sum_{k=1}^N \frac{f''(\xi)h^3}{12}=\frac{f''(\xi)h^3N}{12},</math> so that <math display="block"> -\frac{f''(\xi)h^3N}{12} \leq \frac{b-a}{N} \left[ {f(a) + f(b) \over 2} + \sum_{k=1}^{N-1} f \left( a+k \frac{b-a}{N} \right) \right]-\int_a^bf(x)dx \leq \frac{f''(\xi)h^3N}{12}.</math> Therefore the total error is bounded by <math display="block"> \text{error} = \int_a^b f(x)\,dx - \frac{b-a}{N} \left[ {f(a) + f(b) \over 2} + \sum_{k=1}^{N-1} f \left( a+k \frac{b-a}{N} \right) \right] = \frac{f''(\xi)h^3N}{12}=\frac{f''(\xi)(b-a)^3}{12N^2}.</math> === Periodic and peak functions === The trapezoidal rule converges rapidly for periodic functions. This is an easy consequence of the [[Euler-Maclaurin summation formula]], which says that if <math>f</math> is <math>p</math> times continuously differentiable with period <math>T</math> <math display="block">\sum_{k=0}^{N-1} f(kh)h = \int_0^T f(x)\,dx + \sum_{k=1}^{\lfloor p/2\rfloor} \frac{B_{2k}}{(2k)!} (f^{(2k - 1)}(T) - f^{(2k - 1)}(0)) - (-1)^p h^p \int_0^T\tilde{B}_{p}(x/T)f^{(p)}(x) \, dx </math> where <math>h:=T/N</math> and <math>\tilde{B}_{p}</math> is the periodic extension of the <math>p</math>th Bernoulli polynomial.<ref>{{cite book|title=Numerical Analysis, volume 181 of Graduate Texts in Mathematics|first=Rainer|last=Kress |year=1998 |publisher=Springer-Verlag}}</ref> Due to the periodicity, the derivatives at the endpoint cancel and we see that the error is <math>O(h^p)</math>. A similar effect is available for peak-like functions, such as [[Gaussian function|Gaussian]], [[Exponentially modified Gaussian distribution|Exponentially modified Gaussian]] and other functions with derivatives at integration limits that can be neglected.<ref>{{Cite journal |last=Goodwin|first=E. T. |date=1949 |title=The evaluation of integrals of the form <math>\textstyle\int_{-\infty}^\infty{f(x)e^{-x^2}dx}</math> | journal=[[Mathematical Proceedings of the Cambridge Philosophical Society]] |language=en |volume=45 |issue=2 |pages=241–245 |doi=10.1017/S0305004100024786 |bibcode=1949PCPS...45..241G |issn=1469-8064}}</ref> The evaluation of the full integral of a Gaussian function by trapezoidal rule with 1% accuracy can be made using just 4 points.<ref name=":0">{{Cite journal| last1=Kalambet|first1=Yuri |last2=Kozmin|first2=Yuri |last3=Samokhin|first3=Andrey |date=2018 |title=Comparison of integration rules in the case of very narrow chromatographic peaks |journal=Chemometrics and Intelligent Laboratory Systems|volume=179 |pages=22–30 |doi=10.1016/j.chemolab.2018.06.001|issn=0169-7439}}</ref> [[Simpson's rule]] requires 1.8 times more points to achieve the same accuracy.<ref name=":0" /><ref name="w02" /> === "Rough" functions === For functions that are not in [[Smoothness|''C''<sup>2</sup>]], the error bound given above is not applicable. Still, error bounds for such rough functions can be derived, which typically show a slower convergence with the number of function evaluations <math>N</math> than the <math>O(N^{-2})</math> behaviour given above. Interestingly, in this case the trapezoidal rule often has sharper bounds than [[Simpson's rule]] for the same number of function evaluations.<ref name="cun02" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)