Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Triangular number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Triangular roots and tests for triangular numbers{{Anchor|Triangular root}}== By analogy with the [[square root]] of {{mvar|x}}, one can define the (positive) triangular root of {{mvar|x}} as the number {{mvar|n}} such that {{math|1=''T<sub>n</sub>'' = ''x''}}:<ref name="EulerRoots">{{Citation |last1=Euler |first1=Leonhard |author-link=Leonhard Euler |last2=Lagrange |first2=Joseph Louis |author2-link=Joseph Louis Lagrange |year=1810 |title=Elements of Algebra |edition=2nd |volume=1 |publisher=J. Johnson and Co. |pages=332β335|title-link=Elements of Algebra }}</ref> <math display=block>n = \frac{\sqrt{8x+1}-1}{2}</math> which follows immediately from the [[quadratic formula]]. So an integer {{mvar|x}} is triangular [[if and only if]] {{math|8''x'' + 1}} is a square. Equivalently, if the positive triangular root {{mvar|n}} of {{mvar|x}} is an integer, then {{mvar|x}} is the {{mvar|n}}th triangular number.<ref name="EulerRoots" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)