Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Trigonometric functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Algebraic values== [[File:Unit circle angles color.svg|right|thumb|The [[unit circle]], with some points labeled with their cosine and sine (in this order), and the corresponding angles in radians and degrees.]] The [[algebraic expression]]s for the most important angles are as follows: :<math>\sin 0 = \sin 0^\circ \quad= \frac{\sqrt0}2 = 0</math> ([[Angle#Types of angles|zero angle]]) :<math>\sin \frac\pi6 = \sin 30^\circ = \frac{\sqrt1}2 = \frac{1}{2}</math> :<math>\sin \frac\pi4 = \sin 45^\circ = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}</math> :<math>\sin \frac\pi3 = \sin 60^\circ = \frac{\sqrt{3}}{2}</math> :<math>\sin \frac\pi2 = \sin 90^\circ = \frac{\sqrt4}2 = 1</math> ([[right angle]]) Writing the numerators as [[square roots]] of consecutive non-negative integers, with a denominator of 2, provides an easy way to remember the values.<ref name="Larson_2013"/> Such simple expressions generally do not exist for other angles which are rational multiples of a right angle. *For an angle which, measured in degrees, is a multiple of three, the [[exact trigonometric values]] of the sine and the cosine may be expressed in terms of square roots. These values of the sine and the cosine may thus be constructed by [[Compass-and-straightedge construction|ruler and compass]]. *For an angle of an integer number of degrees, the sine and the cosine may be expressed in terms of square roots and the [[cube root]] of a non-real [[complex number]]. [[Galois theory]] allows a proof that, if the angle is not a multiple of 3Β°, non-real cube roots are unavoidable. *For an angle which, expressed in degrees, is a [[rational number]], the sine and the cosine are [[algebraic number]]s, which may be expressed in terms of [[nth root|{{mvar|n}}th roots]]. This results from the fact that the [[Galois group]]s of the [[cyclotomic polynomial]]s are [[cyclic group|cyclic]]. *For an angle which, expressed in degrees, is not a rational number, then either the angle or both the sine and the cosine are [[transcendental number]]s. This is a corollary of [[Baker's theorem]], proved in 1966. *If the sine of an angle is a rational number then the cosine is not necessarily a rational number, and vice-versa. However if the tangent of an angle is rational then both the sine and cosine of the double angle will be rational. ===Simple algebraic values=== {{main|Exact trigonometric values#Common angles}} The following table lists the sines, cosines, and tangents of multiples of 15 degrees from 0 to 90 degrees. {| class="wikitable" style="text-align:center;" |- ! colspan=2 | Angle, ''ΞΈ'', in ! rowspan=2 | <math>\sin(\theta)</math> ! rowspan=2 | <math>\cos(\theta)</math> ! rowspan=2 | <math>\tan(\theta)</math> |- ! radians ! degrees |- | <math>0</math> | <math>0^\circ</math> | <math>0</math> | <math>1</math> | <math>0</math> |- | <math>\frac{\pi}{12}</math> | <math>15^\circ</math> | <math>\frac{\sqrt{6}-\sqrt{2}}{4}</math> | <math>\frac{\sqrt{6}+\sqrt{2}}{4}</math> | <math>2-\sqrt{3}</math> |- | <math>\frac{\pi}{6}</math> | <math>30^\circ</math> | <math>\frac{1}{2}</math> | <math>\frac{\sqrt{3}}{2}</math> | <math>\frac{\sqrt{3}}{3}</math> |- | <math>\frac{\pi}{4}</math> | <math>45^\circ</math> | <math>\frac{\sqrt{2}}{2}</math> | <math>\frac{\sqrt{2}}{2}</math> | <math>1</math> |- | <math>\frac{\pi}{3}</math> | <math>60^\circ</math> | <math>\frac{\sqrt{3}}{2}</math> | <math>\frac{1}{2}</math> | <math>\sqrt{3}</math> |- | <math>\frac{5\pi}{12}</math> | <math>75^\circ</math> | <math>\frac{\sqrt{6}+\sqrt{2}}{4}</math> | <math>\frac{\sqrt{6}-\sqrt{2}}{4}</math> | <math>2 + \sqrt{3}</math> |- | <math>\frac{\pi}{2}</math> | <math>90^\circ</math> | <math>1</math> | <math>0</math> | {{n/a|Undefined}} |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)