Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Trunking
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Radio communications== {{Main|Trunked radio system}} In two-way radio communications, trunking refers to the ability of transmissions to be served by free channels whose availability is determined by algorithmic protocols. In conventional (i.e., not trunked) radio, users of a single service share one or more exclusive radio channels and must wait their turn to use them, analogous to the operation of a group of cashiers in a grocery store, where each cashier serves his/her own line of customers. The cashier represents each radio channel, and each customer represents a radio user transmitting on their radio. [[Trunked radio system]]s (TRS) pool all of the cashiers (channels) into one group and use a store manager (site controller) that assigns incoming shoppers to free cashiers as determined by the store's policies (TRS protocols). In a TRS, individual transmissions in any conversation may take place on several different channels. In the shopping analogy, this is as if a family of shoppers checks out all at once and are assigned different cashiers by the traffic manager. Similarly, if a single shopper checks out more than once, they may be assigned a different cashier each time. Trunked radio systems provide greater efficiency at the cost of greater management overhead. The store manager's orders must be conveyed to all the shoppers. This is done by assigning one or more radio channels as the "control channel". The control channel transmits data from the site controller that runs the TRS, and is continuously monitored by all of the field radios in the system so that they know how to follow the various conversations between members of their talkgroups (families) and other talkgroups as they hop from radio channel to radio channel. TRS's have grown massively in their complexity since their introduction, and now include multi-site systems that can cover entire states or groups of states. This is similar to the idea of a chain of grocery stores. The shopper generally goes to the nearest grocery store, but if there are complications or congestion, the shopper may opt to go to a neighboring store. Each store in the chain can talk to each other and pass messages between shoppers at different stores if necessary, and they provide backup to each other: if a store has to be closed for repair, then other stores pick up the customers. TRS's have greater risks to overcome than conventional radio systems in that a loss of the store manager (site controller) would cause the system's traffic to no longer be managed. In this case, most of the time the TRS will automatically switch to an alternate control channel, or in more rare circumstances, conventional operation. In spite of these risks, TRS's usually maintain reasonable uptime. TRS's are more difficult to monitor via radio scanner than conventional systems; however, larger manufacturers of radio scanners have introduced models that, with a little extra programming, are able to follow TRS's quite efficiently.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)