Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Truth function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Arity === {{See also|arity}} A concrete function may be also referred to as an ''operator''. In two-valued logic there are 2 nullary operators (constants), 4 [[unary operation|unary operators]], 16 [[binary operation|binary operators]], 256 [[ternary operation|ternary operators]], and <math>2^{2^n}</math> ''n''-ary operators. In three-valued logic there are 3 nullary operators (constants), 27 [[unary operation|unary operators]], 19683 [[binary operation|binary operators]], 7625597484987 [[ternary operation|ternary operators]], and <math>3^{3^n}</math> ''n''-ary operators. In ''k''-valued logic, there are ''k'' nullary operators, <math>k^k</math> unary operators, <math>k^{k^2}</math> binary operators, <math>k^{k^3}</math> ternary operators, and <math>k^{k^n}</math> ''n''-ary operators. An ''n''-ary operator in ''k''-valued logic is a function from <math>\mathbb{Z}_k^n \to \mathbb{Z}_k</math>. Therefore, the number of such operators is <math>|\mathbb{Z}_k|^{|\mathbb{Z}_k^n|} = k^{k^n}</math>, which is how the above numbers were derived. However, some of the operators of a particular arity are actually degenerate forms that perform a lower-arity operation on some of the inputs and ignore the rest of the inputs. Out of the 256 ternary Boolean operators cited above, <math>\binom{3}{2}\cdot 16 - \binom{3}{1}\cdot 4 + \binom{3}{0}\cdot 2</math> of them are such degenerate forms of binary or lower-arity operators, using the [[inclusion–exclusion principle]]. The ternary operator <math>f(x,y,z)=\lnot x</math> is one such operator which is actually a unary operator applied to one input, and ignoring the other two inputs. [[Negation|"Not"]] is a [[unary operation|unary operator]], it takes a single term (¬''P''). The rest are [[binary operation|binary operators]], taking two terms to make a compound statement ({{math|''P'' ∧ ''Q'',{{wrap}}''P'' ∨ ''Q'',{{wrap}}''P'' → ''Q'',{{wrap}}''P'' ↔ ''Q''}}). The set of logical operators {{math|Ω}} may be [[Partition of a set|partitioned]] into disjoint subsets as follows: ::: <math>\Omega = \Omega_0 \cup \Omega_1 \cup \ldots \cup \Omega_j \cup \ldots \cup \Omega_m \,.</math> In this partition, <math>\Omega_j</math> is the set of operator symbols of ''[[arity]]'' {{mvar|j}}. In the more familiar propositional calculi, <math>\Omega</math> is typically partitioned as follows: :::nullary operators: <math>\Omega_0 = \{\bot, \top \} </math> :::unary operators: <math>\Omega_1 = \{ \lnot \} </math> :::binary operators: <math>\Omega_2 \supset \{ \land, \lor, \rightarrow, \leftrightarrow \} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)