Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Two-body problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Center of mass motion (1st one-body problem) === Let <math>\mathbf{R} </math> be the position of the [[center of mass]] ([[barycenter]]) of the system. Addition of the force equations (1) and (2) yields <math display="block">m_1 \ddot{\mathbf{x}}_1 + m_2 \ddot{\mathbf{x}}_2 = (m_1 + m_2)\ddot{\mathbf{R}} = \mathbf{F}_{12} + \mathbf{F}_{21} = 0</math> where we have used [[Newton's laws of motion|Newton's third law]] {{math|1='''F'''<sub>12</sub> = β'''F'''<sub>21</sub>}} and where <math display="block">\ddot{\mathbf{R}} \equiv \frac{m_{1}\ddot{\mathbf{x}}_{1} + m_{2}\ddot{\mathbf{x}}_{2}}{m_{1} + m_{2}}.</math> The resulting equation: <math display="block">\ddot{\mathbf{R}} = 0</math> shows that the velocity <math>\mathbf{v} = \frac{dR}{dt}</math> of the center of mass is constant, from which follows that the total momentum {{math|''m''<sub>1</sub> '''v'''<sub>1</sub> + ''m''<sub>2</sub> '''v'''<sub>2</sub>}} is also constant ([[conservation of momentum]]). Hence, the position {{math|'''R'''(''t'')}} of the center of mass can be determined at all times from the initial positions and velocities.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)