Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Unit vector
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===General unit vectors=== {{main|Orthogonal coordinates}} Common themes of unit vectors occur throughout [[physics]] and [[geometry]]:<ref>{{cite book|title=Calculus (Schaum's Outlines Series)|edition=5th|publisher=Mc Graw Hill|author1=F. Ayres |author2=E. Mendelson |year=2009|isbn=978-0-07-150861-2}}</ref> {| class="wikitable" |- ! scope="col" width="200" | Unit vector ! scope="col" width="150" | Nomenclature ! scope="col" width="410" | Diagram |- | Tangent vector to a curve/flux line || <math> \mathbf{\hat{t}}</math> || rowspan="3" | [[File:Tangent normal binormal unit vectors.svg|200px|"200px"]] [[File:Polar coord unit vectors and normal.svg|200px|"200px"]] A normal vector <math> \mathbf{\hat{n}} </math> to the plane containing and defined by the radial position vector <math> r \mathbf{\hat{r}} </math> and angular tangential direction of rotation <math> \theta \boldsymbol{\hat{\theta}} </math> is necessary so that the vector equations of angular motion hold. |- |Normal to a surface tangent plane/plane containing radial position component and angular tangential component || <math> \mathbf{\hat{n}}</math> In terms of [[spherical coordinate system|polar coordinates]]; <math> \mathbf{\hat{n}} = \mathbf{\hat{r}} \times \boldsymbol{\hat{\theta}} </math> |- | Binormal vector to tangent and normal || <math> \mathbf{\hat{b}} = \mathbf{\hat{t}} \times \mathbf{\hat{n}} </math><ref>{{cite book|title=Vector Analysis (Schaum's Outlines Series)|edition=2nd|publisher=Mc Graw Hill|author1=M. R. Spiegel |author2=S. Lipschutz |author3=D. Spellman |year=2009|isbn=978-0-07-161545-7}}</ref> |- | Parallel to some axis/line || <math> \mathbf{\hat{e}}_{\parallel} </math> || rowspan="2" | [[File:Perpendicular and parallel unit vectors.svg|200px|"200px"]] One unit vector <math> \mathbf{\hat{e}}_{\parallel}</math> aligned parallel to a principal direction (red line), and a perpendicular unit vector <math> \mathbf{\hat{e}}_{\bot}</math> is in any radial direction relative to the principal line. |- | Perpendicular to some axis/line in some radial direction || <math> \mathbf{\hat{e}}_{\bot} </math> |- | Possible angular deviation relative to some axis/line || <math> \mathbf{\hat{e}}_{\angle} </math> || [[File:Angular unit vector.svg|200px|"200px"]] Unit vector at acute deviation angle ''Ο'' (including 0 or ''Ο''/2 rad) relative to a principal direction. |- |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)