Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Universal quantification
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Other connectives === The universal (and existential) quantifier moves unchanged across the [[logical connective]]s [[logical conjunction|β§]], [[logical disjunction|β¨]], [[material conditional|β]], and [[converse nonimplication|β]], as long as the other operand is not affected;<ref>that is, if the variable <math>y</math> does not occur free in the formula <math>P(x)</math> in the equivalences below</ref> that is: :<math>\begin{align} P(x) \land (\exists{y}{\in}\mathbf{Y}\, Q(y)) &\equiv\ \exists{y}{\in}\mathbf{Y}\, (P(x) \land Q(y)) \\ P(x) \lor (\exists{y}{\in}\mathbf{Y}\, Q(y)) &\equiv\ \exists{y}{\in}\mathbf{Y}\, (P(x) \lor Q(y)),& \text{provided that } \mathbf{Y}\neq \emptyset \\ P(x) \to (\exists{y}{\in}\mathbf{Y}\, Q(y)) &\equiv\ \exists{y}{\in}\mathbf{Y}\, (P(x) \to Q(y)),& \text{provided that } \mathbf{Y}\neq \emptyset \\ P(x) \nleftarrow (\exists{y}{\in}\mathbf{Y}\, Q(y)) &\equiv\ \exists{y}{\in}\mathbf{Y}\, (P(x) \nleftarrow Q(y)) \\ P(x) \land (\forall{y}{\in}\mathbf{Y}\, Q(y)) &\equiv\ \forall{y}{\in}\mathbf{Y}\, (P(x) \land Q(y)),& \text{provided that } \mathbf{Y}\neq \emptyset \\ P(x) \lor (\forall{y}{\in}\mathbf{Y}\, Q(y)) &\equiv\ \forall{y}{\in}\mathbf{Y}\, (P(x) \lor Q(y)) \\ P(x) \to (\forall{y}{\in}\mathbf{Y}\, Q(y)) &\equiv\ \forall{y}{\in}\mathbf{Y}\, (P(x) \to Q(y)) \\ P(x) \nleftarrow (\forall{y}{\in}\mathbf{Y}\, Q(y)) &\equiv\ \forall{y}{\in}\mathbf{Y}\, (P(x) \nleftarrow Q(y)),& \text{provided that } \mathbf{Y}\neq \emptyset \end{align}</math> Conversely, for the logical connectives [[Sheffer stroke|β]], [[Logical NOR|β]], [[Material nonimplication|β]], and [[converse implication|β]], the quantifiers flip: :<math>\begin{align} P(x) \uparrow (\exists{y}{\in}\mathbf{Y}\, Q(y)) & \equiv\ \forall{y}{\in}\mathbf{Y}\, (P(x) \uparrow Q(y)) \\ P(x) \downarrow (\exists{y}{\in}\mathbf{Y}\, Q(y)) & \equiv\ \forall{y}{\in}\mathbf{Y}\, (P(x) \downarrow Q(y)),& \text{provided that } \mathbf{Y}\neq \emptyset \\ P(x) \nrightarrow (\exists{y}{\in}\mathbf{Y}\, Q(y)) & \equiv\ \forall{y}{\in}\mathbf{Y}\, (P(x) \nrightarrow Q(y)),& \text{provided that } \mathbf{Y}\neq \emptyset \\ P(x) \gets (\exists{y}{\in}\mathbf{Y}\, Q(y)) & \equiv\ \forall{y}{\in}\mathbf{Y}\, (P(x) \gets Q(y)) \\ P(x) \uparrow (\forall{y}{\in}\mathbf{Y}\, Q(y)) & \equiv\ \exists{y}{\in}\mathbf{Y}\, (P(x) \uparrow Q(y)),& \text{provided that } \mathbf{Y}\neq \emptyset \\ P(x) \downarrow (\forall{y}{\in}\mathbf{Y}\, Q(y)) & \equiv\ \exists{y}{\in}\mathbf{Y}\, (P(x) \downarrow Q(y)) \\ P(x) \nrightarrow (\forall{y}{\in}\mathbf{Y}\, Q(y)) & \equiv\ \exists{y}{\in}\mathbf{Y}\, (P(x) \nrightarrow Q(y)) \\ P(x) \gets (\forall{y}{\in}\mathbf{Y}\, Q(y)) & \equiv\ \exists{y}{\in}\mathbf{Y}\, (P(x) \gets Q(y)),& \text{provided that } \mathbf{Y}\neq \emptyset \\ \end{align}</math> <!-- What about: *[[logical biconditional|Biconditional (if and only if) (xnor)]] (<math>\leftrightarrow</math>, <math>\equiv</math>, or <math>=</math>) *[[Exclusive or|Exclusive disjunction (xor)]] (<math>\not\leftrightarrow</math>) -->
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)