Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Van der Waerden's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Proof in the case of ''W''(3, 3) === {| class="wikitable floatright" style="text-align:right |+ W(3, 3) table<br />''g''=2·3<sup>7·(2·3<sup>7</sup> + 1)</sup> ,<br />''m''=7(2·3<sup>7</sup> + 1) ! ''b'' !! colspan="5" | ''c''(''n''): color of integers |- ! rowspan="2" | 0 | 1 || 2 || 3 || … || ''m'' |- | '''<span style="color:limegreen;">G</span>''' || '''<span style="color:red;">R</span>''' || '''<span style="color:red;">R</span>''' || … || '''<span style="color:blue;">B</span>''' |- ! rowspan="2" | 1 | ''m'' + 1 || ''m'' + 2 || ''m'' + 3 || … || 2''m'' |- | '''<span style="color:blue;">B</span>''' || '''<span style="color:red;">R</span>''' || '''<span style="color:limegreen;">G</span>''' || … || '''<span style="color:red;">R</span>''' |- ! … | colspan="5" | … |- ! rowspan="2" | ''g'' | ''gm'' + 1 || ''gm'' + 2 || ''gm'' + 3 || … || (''g'' + 1)''m'' |- | '''<span style="color:blue;">B</span>''' || '''<span style="color:red;">R</span>''' || '''<span style="color:blue;">B</span>''' || … || '''<span style="color:limegreen;">G</span>''' |} A similar argument can be advanced to show that ''W''(3, 3) ≤ 7(2·3<sup>7</sup>+1)(2·3<sup>7·(2·3<sup>7</sup>+1)</sup>+1). One begins by dividing the integers into 2·3<sup>7·(2·3<sup>7</sup> + 1)</sup> + 1 groups of 7(2·3<sup>7</sup> + 1) integers each; of the first 3<sup>7·(2·3<sup>7</sup> + 1)</sup> + 1 groups, two must be colored identically. Divide each of these two groups into 2·3<sup>7</sup>+1 subgroups of 7 integers each; of the first 3<sup>7</sup> + 1 subgroups in each group, two of the subgroups must be colored identically. Within each of these identical subgroups, two of the first four integers must be the same color, say <span style="color:red;">red</span>; this implies either a <span style="color:red;">red</span> progression or an element of a different color, say <span style="color:blue;">blue</span>, in the same subgroup. Since we have two identically-colored subgroups, there is a third subgroup, still in the same group that contains an element which, if either <span style="color:red;">red</span> or <span style="color:blue;">blue</span>, would complete a <span style="color:red;">red</span> or <span style="color:blue;">blue</span> progression, by a construction analogous to the one for ''W''(2, 3). Suppose that this element is <span style="color:limegreen;">green</span>. Since there is a group that is colored identically, it must contain copies of the <span style="color:red;">red</span>, <span style="color:blue;">blue</span>, and <span style="color:limegreen;">green</span> elements we have identified; we can now find a pair of <span style="color:red;">red</span> elements, a pair of <span style="color:blue;">blue</span> elements, and a pair of <span style="color:limegreen;">green</span> elements that 'focus' on the same integer, so that whatever color it is, it must complete a progression.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)