Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Wankel engine
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Equivalent displacement and power output=== Different approaches have been used over time to evaluate the total displacement of a Wankel engine in relation to a reciprocating engine: considering only one, two, or all three chambers.<ref name="SAE J1220">{{Citation|title=Rotary-Trochoidal Engine Nomenclature and Terminology - SAE J1220|publisher=Society of Automotive Engineers|date=June 1978|url=https://www.sae.org/standards/content/j1220_197806/}}</ref> Part of this dispute was because of Europe vehicle taxation being dependent on engine displacement, as reported by [[Karl Ludvigsen]].<ref name="Ludvigsen 2003">{{cite web|last1=Ludvigsen|first1=Karl|author1-link=Karl Ludvigsen|title=How Big Are Wankel Engines?|publisher=Bentley Publishers|date=2003|url=https://www.hemmings.com/stories/article/how-big-are-wankel-engines}}</ref> If <math>y</math> is the number of chambers considered for each rotor and <math>i</math> the number of rotors, then the total displacement is: :<math>V_h=y \cdot V_k \cdot i.</math> If <math>p_{me}</math> is the [[mean effective pressure]], <math>N</math> the shaft [[rotational speed]] and <math>n_c</math> the number of shaft revolutions needed to complete a [[thermodynamic cycle|cycle]] (<math>N/n_c</math> is the frequency of the thermodynamic cycle), then the total power output is: :<math>P = p_{me} \cdot V_h \cdot {N \over n_c} = p_{me} \cdot y \cdot V_k \cdot i \cdot {N \over n_c}.</math> ====Considering one chamber==== [[Kenichi Yamamoto (engineer)|Kenichi Yamamoto]] and [[:de:Walter Froede|Walter G. Froede]] placed <math>y = 1</math> and <math>n_c = 1</math>:<ref name="Yamamoto 1981 p. 37">{{cite book |last1=Yamamoto |first1=Kenichi |title=Rotary Engine |publisher=Sankaido |year=1981 |isbn=978-99973-41-17-4 |page=37 |quote=Table 4.1; Yamamoto uses Vh for Vk. In this article, Vk is used for convenience}}</ref><ref name="Froede 1961">{{cite journal|last1=Froede|first1=Walter G.|title=Kreiskolbenmotoren Bauart NSU-Wankel|journal=MTZ - Motortechnische Zeitschrift|volume=22|issue=1|year=1961|pages=1–10|language=de}}</ref> :<math>P = p_{me} \cdot 1 \cdot V_k \cdot i \cdot {N \over 1}.</math> With these values, a single-rotor Wankel engine produces the same average power as a <math>V_h</math> single-cylinder [[two-stroke engine]], with the same average torque, with the shaft running at the same speed, operating the Otto cycles at twice the frequency. ====Considering two chambers==== Richard Franz Ansdale, [[Wolf-Dieter Bensinger]] and [[Felix Wankel]] based their analogy on the number of cumulative expansion strokes per shaft revolution. In a Wankel rotary engine, the eccentric shaft must make three full rotations (1080°) per combustion chamber to complete all four phases of a four-stroke engine. Since a Wankel rotary engine has three combustion chambers, all four phases of a four-stroke engine are completed within one full rotation of the eccentric shaft (360°), and one power pulse is produced at each revolution of the shaft.<ref name="Bensinger 1973 p. 65">{{cite book |last1=Bensinger |first1=Wolf-Dieter |title=Rotationskolben-Verbrennungsmotoren |place=Berlin, Heidelberg, New York |date=1973 |isbn=978-3-540-05886-1 |oclc=251737493 |language=de |page=65}}</ref><ref name="Okimoto 2002 pp. 810">{{cite journal |last1=Okimoto |first1=Haruo |title=Der Rotationskolbenmotor Renesis |journal=MTZ - Motortechnische Zeitschrift |publisher=Springer |volume=63 |issue=10 |year=2002 |issn=0024-8525 |doi=10.1007/bf03226650 |pages=810 |language=de}}<br/> {{cite journal |last1=Okimoto |first1=Haruo |title=The Renesis rotary engine |journal=MTZ Worldwide |publisher=Springer |volume=63 |issue=10 |year=2002 |issn=2192-9114 |doi=10.1007/bf03227573 |pages=8}}</ref> This is different from a four-stroke piston engine, which needs to make two full rotations per combustion chamber to complete all four phases of a four-stroke engine. Thus, in a Wankel rotary engine, according to Bensinger, displacement (<math>V_h</math>) is:<ref name="Bensinger 1973 p. 66">{{cite book |last1=Bensinger |first1=Wolf-Dieter |title=Rotationskolben-Verbrennungsmotoren |place=Berlin, Heidelberg, New York |date=1973 |isbn=978-3-540-05886-1 |oclc=251737493 |language=de |page=66}}</ref><ref name="Ansdale Keller 1971 p. 82–83">{{cite book |last1=Ansdale |first1=R.F. |last2=Keller |first2=H. |title=Der Wankelmotor: Konstruktion und Wirkungsweise |place=Stuttgart| publisher=Motorbuch-Verlag |year=1971 |language=de |pages=82–83}}</ref><ref name="Wankel 1964">{{cite journal|last1=Wankel|first1=Felix|title=Die Anzahl der Zylinder und Kammern bei durchsatzgleichen Viertaktmotoren mit Hubkolben und mit Rotationskolben der Trochoidenbauart|journal=MTZ - Motortechnische Zeitschrift|volume=25|issue=12|year=1964|pages=489–494|language=de}}</ref> :<math>V_h = 2 V_k \cdot i</math> If power is to be derived from BMEP, the four-stroke engine formula applies: :<math>P = {p_\text{me} \cdot V_\text{h} \cdot {N \over 2}}</math> ====Considering three chambers==== Eugen Wilhelm Huber, and Karl-Heinz Küttner counted all the chambers, since each one operates its own thermodynamic cycle. So <math>y = 3</math> and <math>n_c = 3</math>:<ref name="Wankel 1958 p. 16">{{cite patent |inventor-last=Wankel |inventor-first=Felix |title=Rotary internal combustion engine |issue-date=1958-11-17 |patent-number=2988065 |country-code=US}}, p. 16</ref><ref name="Huber 1960">{{cite journal|last1=Huber|first1=Eugen Wilhelm|title=Thermodynamische Untersuchungen an der Kreiskolbenmaschine|journal=VDI-Berichte|volume=45|year=1960|pages=13–29|language=de}}</ref><ref name="Küttner 1993 p. 391">{{cite book|last1=Küttner|first1=Karl-Heinz|title=Kolbenmaschinen|publisher=B. G. Teubner|date=1993|isbn=978-3-322-94040-7|doi=10.1007/978-3-322-94040-7|language=de|page=391}}</ref> :<math>P = p_{me} \cdot 3 \cdot V_k \cdot i \cdot {N \over 3}.</math> With these values, a single-rotor Wankel engine produces the same average power as a <math>V_h</math> three-cylinder four-stroke engine, with 3/2 of the average torque, with the shaft running at 2/3 the speed, operating the Otto cycles at the same frequency: :<math>P = p_{me} \cdot 3 \cdot V_k \cdot {{2 \over 3} N \over 2}.</math> Applying a 2/3 [[gear set]] to the output shaft of the three-cylinder (or a 3/2 one to the Wankel), the two are analogous from the thermodynamic and mechanical output point of view, as pointed out by Huber.<ref name="Huber 1960"/> ====Examples (counting two chambers)==== ;KKM 612 ([[NSU Ro80]]) * e=14 mm * R=100 mm * a=2 mm * B=67 mm * i=2 :<math>V_k = \sqrt 3 \cdot 67 \, mm \cdot (100 + 2 \, mm) \cdot 3 \cdot \, 14 \, mm \approx 498,000 \, mm^3 = 498 \, cm^3</math> :<math>V_h = 2 \cdot 498 \, cm^3 \cdot 2 = 1,992 \ cm^3</math><ref name="Bensinger 1973 p. 133">{{cite book |last1=Bensinger |first1=Wolf-Dieter |title=Rotationskolben-Verbrennungsmotoren |place=Berlin, Heidelberg, New York |date=1973 |isbn=978-3-540-05886-1 |oclc=251737493 |language=de |page=133}}</ref><ref name="Dobler 2000 pp. 440–442"/> ;Mazda 13B-REW ([[Mazda RX-7]]) * e=15 mm * R=103 mm * a=2 mm * B=80 mm * i=2 :<math>V_k = \sqrt 3 \cdot 80 \, mm \cdot (103+2 \, mm) \cdot 3 \cdot \, 15 \, mm \approx 654,000 \, mm^3 = 654 \, cm^3</math> :<math>V_h = 2 \cdot 654 \, cm^3 \cdot 2 = 2,616 \ cm^3</math><ref name="Dobler 2000 pp. 440–442">{{cite journal |last1=Dobler |first1=Helmut |title=Renesis — ein neuer Wankelmotor von Mazda |journal=MTZ - Motortechnische Zeitschrift |publisher=Springer |volume=61 |issue=7–8 |year=2000 |issn=0024-8525 |doi=10.1007/bf03226583 |pages=440–442 |language=de}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)