Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Waring's problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Upper bounds for ''G''(''k'')=== ''G''(3) is at least 4 (since cubes are congruent to 0, 1 or −1 mod 9); for numbers less than 1.3{{e|9}}, {{val|1290740}} is the last to require 6 cubes, and the number of numbers between ''N'' and 2''N'' requiring 5 cubes drops off with increasing ''N'' at sufficient speed to have people believe that {{nowrap|1=''G''(3) = 4}};<ref>{{harvtxt|Nathanson|1996|p=71}}.</ref> the largest number now known not to be a sum of 4 cubes is {{val|7373170279850}},<ref name="x7373170279850">{{cite journal |last1=Deshouillers |first1=Jean-Marc |last2=Hennecart |first2= François |last3=Landreau |first3=Bernard |last4=I. Gusti Putu Purnaba |first4=Appendix by |title=7373170279850 |journal=Mathematics of Computation |volume=69 |issue=229 |year=2000 |pages=421–439 |doi=10.1090/S0025-5718-99-01116-3 |doi-access=free}}</ref> and the authors give reasonable arguments there that this may be the largest possible. The upper bound {{nowrap|''G''(3) ≤ 7}} is due to Linnik in 1943.<ref>U. V. Linnik. "On the representation of large numbers as sums of seven cubes". Mat. Sb. N.S. 12(54), 218–224 (1943).</ref> (All nonnegative integers require at most 9 cubes, and the largest integers requiring 9, 8, 7, 6 and 5 cubes are conjectured to be 239, 454, 8042, {{val|1290740}} and {{val|7373170279850}}, respectively.) {{val|13792}} is the largest number to require 17 fourth powers (Deshouillers, Hennecart and Landreau showed in 2000<ref name="sixteen-biquadrates">{{cite journal |last1=Deshouillers |first1=Jean-Marc |last2=Hennecart |first2=François |last3=Landreau |first3=Bernard |title=Waring's Problem for sixteen biquadrates – numerical results |journal=[[Journal de théorie des nombres de Bordeaux]] |volume=12 |issue=2 |year=2000 |pages=411–422 |url= http://www.math.ethz.ch/EMIS/journals/JTNB/2000-2/Dhl.ps |doi=10.5802/jtnb.287 |doi-access=free}}</ref> that every number between {{val|13793}} and 10<sup>245</sup> required at most 16, and Kawada, Wooley and Deshouillers extended<ref name="Deshouillers Kawada Wooley 2005 pp. 1–120">{{cite journal | last1=Deshouillers | first1=Jean-Marc | last2=Kawada | first2=Koichi | last3=Wooley | first3=Trevor D. | title=On Sums of Sixteen Biquadrates | journal=Mémoires de la Société Mathématique de France | volume=1 | date=2005 | issn=0249-633X | doi=10.24033/msmf.413 | pages=1–120}}</ref> Davenport's 1939 result to show that every number above 10<sup>220</sup> required at most 16). Numbers of the form 31·16<sup>''n''</sup> always require 16 fourth powers. {{val|68578904422}} is the last known number that requires 9 fifth powers (Integer sequence S001057, Tony D. Noe, Jul 04 2017), {{val|617597724}} is the last number less than 1.3{{e|9}} that requires 10 fifth powers, and {{val|51033617}} is the last number less than 1.3{{e|9}} that requires 11. The upper bounds on the right with {{nowrap|1=''k'' = 5, 6, ..., 20}} are due to [[R. C. Vaughan|Vaughan]] and [[Trevor Wooley|Wooley]].<ref name=Vaughan-Wooley>{{cite book | first1 = R. C. | last1 = Vaughan | author-link2 = Trevor Wooley | first2 = Trevor | last2 = Wooley | chapter = Waring's Problem: A Survey |title=Number Theory for the Millennium |volume=III |publisher=A. K. Peters |pages=301–340 |year=2002 |isbn=978-1-56881-152-9 | mr=1956283 | location=Natick, MA | editor1-last=Bennet | editor1-first=Michael A. | editor2-last=Berndt | editor2-first=Bruce C. | editor3-last=Boston | editor3-first=Nigel | editor4-last=Diamond | editor4-first=Harold G. | editor5-last=Hildebrand | editor5-first=Adolf J. | editor6-first=Walter | editor6-last=Philipp}}</ref> Using his improved [[Hardy–Ramanujan–Littlewood circle method|Hardy–Ramanujan–Littlewood method]], [[Ivan Matveyevich Vinogradov|I. M. Vinogradov]] published numerous refinements leading to : <math>G(k) \le k(3\log k + 11)</math> in 1947<ref name="Vinogradov 1947 ">{{cite book | last=Vinogradov | first=Ivan Matveevich |translator-last1=Roth |translator-first1=K.F. |translator-last2=Davenport |translator-first2=Anne | title=The Method of Trigonometrical Sums in the Theory of Numbers | publisher=Dover Publications | publication-place=Mineola, NY | date=1 Sep 2004 |orig-date=1947 | isbn=978-0-486-43878-8}}</ref> and, ultimately, : <math>G(k) \le k(2\log k + 2\log\log k + C\log\log\log k)</math> for an unspecified constant ''C'' and sufficiently large ''k'' in 1959.<ref name="Math-Net.Ru z658">{{cite journal |last1=Vinogradov |first1=I. M. |title=On an upper bound for $G(n)$ |journal=Izv. Akad. Nauk SSSR Ser. Mat. |date=1959 |volume=23 |issue=5 |pages=637–642 |url=https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=im&paperid=3799&option_lang=eng | language=Russian}}</ref> Applying his [[p-adic|''p''-adic]] form of the Hardy–Ramanujan–Littlewood–Vinogradov method to estimating trigonometric sums, in which the summation is taken over numbers with small prime divisors, [[Anatolii Alexeevitch Karatsuba]] obtained<ref>{{cite journal |first=A. A. |last=Karatsuba |title=On the function ''G''(''n'') in Waring's problem | journal=Izv. Akad. Nauk SSSR Ser. Mat. |volume=27 |issue=4 |pages=935–947 |year=1985 |bibcode=1986IzMat..27..239K |doi=10.1070/IM1986v027n02ABEH001176}}</ref> in 1985 a new estimate, for <math>k \ge 400</math>: : <math>G(k) \le k(2\log k + 2\log\log k + 12).</math> Further refinements were obtained by Vaughan in 1989.<ref name="Vaughan 1989 pp. 1–71">{{cite journal | last=Vaughan | first=R. C. | title=A new iterative method in Waring's problem | journal=Acta Mathematica | volume=162 | date=1989 | issn=0001-5962 | doi=10.1007/BF02392834 | pages=1–71}}</ref> Wooley then established that for some constant ''C'',<ref name=Vaughan>{{cite book | zbl=0868.11046 | last=Vaughan | first=R. C. | title=The Hardy–Littlewood method | edition=2nd | series=Cambridge Tracts in Mathematics | volume=125 | location=Cambridge | publisher=[[Cambridge University Press]] | year=1997 | isbn=0-521-57347-5 }}</ref> : <math>G(k) \le k(\log k + \log\log k + C).</math> Vaughan and Wooley's survey article from 2002 was comprehensive at the time.<ref name=Vaughan-Wooley/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)