Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Well-quasi-ordering
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Constructing new wpo's from given ones== Let <math>X_1</math> and <math>X_2</math> be two disjoint wpo sets. Let <math>Y=X_1\cup X_2</math>, and define a partial order on <math>Y</math> by letting <math>y_1\le_Y y_2</math> if and only if <math>y_1,y_2\in X_i</math> for the same <math>i\in\{1,2\}</math> and <math>y_1 \le_{X_i} y_2</math>. Then <math>Y</math> is wpo, and <math>o(Y) = o(X_1) \oplus o(X_2)</math>, where <math>\oplus</math> denotes [[Ordinal arithmetic|natural sum]] of ordinals.<ref name="dejongh_parikh" /> Given wpo sets <math>X_1</math> and <math>X_2</math>, define a partial order on the Cartesian product <math>Y=X_1\times X_2</math>, by letting <math>(a_1,a_2)\le_Y (b_1,b_2)</math> if and only if <math>a_1\le_{X_1} b_1</math> and <math>a_2\le_{X_2} b_2</math>. Then <math>Y</math> is wpo (this is a generalization of [[Dickson's lemma]]), and <math>o(Y) = o(X_1)\otimes o(X_2)</math>, where <math>\otimes</math> denotes [[Ordinal arithmetic|natural product]] of ordinals.<ref name="dejongh_parikh" /> Given a wpo set <math>X</math>, let <math>X^*</math> be the set of finite sequences of elements of <math>X</math>, partially ordered by the subsequence relation. Meaning, let <math>(x_1,\ldots,x_n)\le_{X^*} (y_1,\ldots,y_m)</math> if and only if there exist indices <math>1\le i_1<\cdots<i_n\le m</math> such that <math>x_j \le_X y_{i_j}</math> for each <math>1\le j\le n</math>. By [[Higman's lemma]], <math>X^*</math> is wpo. The ordinal type of <math>X^*</math> is<ref name="dejongh_parikh" /><ref name="schmidt">{{cite thesis |last=Schmidt |first=Diana |type=Habilitationsschrift |date=1979 |title=Well-partial orderings and their maximal order types |publisher=Heidelberg}} Republished in: {{cite book |last=Schmidt |first=Diana |date=2020 |chapter=Well-partial orderings and their maximal order types |title=Well-Quasi Orders in Computation, Logic, Language and Reasoning |publisher=Springer |pages=351β391 |editor-last1=Schuster |editor-first1=Peter M. |editor-last2=Seisenberger |editor-first2=Monika |editor-last3=Weiermann |editor-first3=Andreas |series=Trends in Logic |volume=53 |doi=10.1007/978-3-030-30229-0_13|isbn=978-3-030-30228-3 }}</ref> <math display="block">o(X^*)=\begin{cases}\omega^{\omega^{o(X)-1}},&o(X) \text{ finite};\\ \omega^{\omega^{o(X)+1}},&o(X)=\varepsilon_\alpha+n \text{ for some }\alpha\text{ and some finite }n;\\ \omega^{\omega^{o(X)}},&\text{otherwise}.\end{cases}</math> Given a wpo set <math>X</math>, let <math>T(X)</math> be the set of all finite rooted trees whose vertices are labeled by elements of <math>X</math>. Partially order <math>T(X)</math> by the [[Kruskal's tree theorem|tree embedding relation]]. By [[Kruskal's tree theorem]], <math>T(X)</math> is wpo. This result is nontrivial even for the case <math>|X|=1</math> (which corresponds to unlabeled trees), in which case <math>o(T(X))</math> equals the [[small Veblen ordinal]]. In general, for <math>o(X)</math> countable, we have the upper bound <math>o(T(X))\le\vartheta(\Omega^\omega o(X))</math> in terms of the <math>\vartheta</math> [[ordinal collapsing function]]. (The small Veblen ordinal equals <math>\vartheta(\Omega^\omega)</math> in this ordinal notation.)<ref>{{cite journal |last1=Rathjen |first1=Michael |last2=Weiermann |first2=Andreas |title=Proof-theoretic investigations on Kruskal's theorem |journal=Annals of Pure and Applied Logic |date=1993 |volume=60 |pages=49β88 |doi=10.1016/0168-0072(93)90192-G|doi-access=free }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)