Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Wiener process
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Covariance and correlation === The [[covariance function|covariance]] and [[correlation function|correlation]] (where <math>s \leq t</math>): <math display="block">\begin{align} \operatorname{cov}(W_s, W_t) &= s, \\ \operatorname{corr}(W_s,W_t) &= \frac{\operatorname{cov}(W_s,W_t)}{\sigma_{W_s} \sigma_{W_t}} = \frac{s}{\sqrt{st}} = \sqrt{\frac{s}{t}}. \end{align}</math> These results follow from the definition that non-overlapping increments are independent, of which only the property that they are uncorrelated is used. Suppose that <math>t_1\leq t_2</math>. <math display="block">\operatorname{cov}(W_{t_1}, W_{t_2}) = \operatorname{E}\left[(W_{t_1}-\operatorname{E}[W_{t_1}]) \cdot (W_{t_2}-\operatorname{E}[W_{t_2}])\right] = \operatorname{E}\left[W_{t_1} \cdot W_{t_2} \right].</math> Substituting <math display="block"> W_{t_2} = ( W_{t_2} - W_{t_1} ) + W_{t_1} </math> we arrive at: <math display="block">\begin{align} \operatorname{E}[W_{t_1} \cdot W_{t_2}] & = \operatorname{E}\left[W_{t_1} \cdot ((W_{t_2} - W_{t_1})+ W_{t_1}) \right] \\ & = \operatorname{E}\left[W_{t_1} \cdot (W_{t_2} - W_{t_1} )\right] + \operatorname{E}\left[ W_{t_1}^2 \right]. \end{align}</math> Since <math> W_{t_1}=W_{t_1} - W_{t_0} </math> and <math> W_{t_2} - W_{t_1} </math> are independent, <math display="block"> \operatorname{E}\left [W_{t_1} \cdot (W_{t_2} - W_{t_1} ) \right ] = \operatorname{E}[W_{t_1}] \cdot \operatorname{E}[W_{t_2} - W_{t_1}] = 0.</math> Thus <math display="block">\operatorname{cov}(W_{t_1}, W_{t_2}) = \operatorname{E} \left [W_{t_1}^2 \right ] = t_1.</math> A corollary useful for simulation is that we can write, for {{math|''t''<sub>1</sub> < ''t''<sub>2</sub>}}: <math display="block">W_{t_2} = W_{t_1}+\sqrt{t_2-t_1}\cdot Z</math> where {{mvar|Z}} is an independent standard normal variable.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)