Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Wigner–Eckart theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Proof== Starting with the definition of a [[spherical tensor operator]], we have :<math>[J_\pm, T^{(k)}_q] = \hbar \sqrt{(k \mp q)(k \pm q + 1)}T_{q\pm 1}^{(k)},</math> which we use to then calculate :<math> \begin{align} &\langle j \, m | [J_\pm, T^{(k)}_q] | j' \, m' \rangle = \hbar \sqrt{(k \mp q) (k \pm q + 1)} \, \langle j \, m | T^{(k)}_{q \pm 1} | j' \, m' \rangle. \end{align} </math> If we expand the commutator on the LHS by calculating the action of the {{math|''J''<sub>±</sub>}} on the bra and ket, then we get :<math> \begin{align} \langle j \, m | [J_\pm, T^{(k)}_q] | j' \, m' \rangle ={} &\hbar\sqrt{(j \pm m) (j \mp m + 1)} \, \langle j \, (m \mp 1) | T^{(k)}_q | j' \, m' \rangle \\ &-\hbar\sqrt{(j' \mp m')(j' \pm m' + 1)} \, \langle j \, m | T^{(k)}_q | j' \, (m' \pm 1) \rangle. \end{align} </math> We may combine these two results to get :<math> \begin{align} \sqrt{(j \pm m) (j \mp m + 1)} \langle j \, (m \mp 1) | T^{(k)}_q | j' \, m' \rangle = &\sqrt{(j' \mp m') (j' \pm m' + 1)} \, \langle j \, m | T^{(k)}_q | j' \, (m' \pm 1) \rangle \\ &+\sqrt{(k \mp q) (k \pm q + 1)} \, \langle j \, m | T^{(k)}_{q \pm 1} | j' \, m' \rangle. \end{align} </math> This recursion relation for the matrix elements closely resembles that of the [[Clebsch–Gordan coefficient]]. In fact, both are of the form {{math|Σ<sub>''c''</sub> ''a''<sub>''b'', ''c''</sub> ''x''<sub>''c''</sub> {{=}} 0}}. We therefore have two sets of linear homogeneous equations: :<math> \begin{align} \sum_c a_{b, c} x_c &= 0, & \sum_c a_{b, c} y_c &= 0. \end{align} </math> one for the Clebsch–Gordan coefficients ({{math|''x<sub>c</sub>''}}) and one for the matrix elements ({{math|''y<sub>c</sub>''}}). It is not possible to exactly solve for {{math|''x<sub>c</sub>''}}. We can only say that the ratios are equal, that is :<math>\frac{x_c}{x_d} = \frac{y_c}{y_d}</math> or that {{math|''x<sub>c</sub>'' ∝ ''y<sub>c</sub>''}}, where the coefficient of proportionality is independent of the indices. Hence, by comparing recursion relations, we can identify the Clebsch–Gordan coefficient {{math|⟨''j''<sub>1</sub> ''m''<sub>1</sub> ''j''<sub>2</sub> (''m''<sub>2</sub> ± 1){{!}}''j m''⟩}} with the matrix element {{math|⟨''j''′ ''m''′{{!}}''T''<sup>(''k'')</sup><sub>''q'' ± 1</sub>{{!}}''j'' ''m''⟩}}, then we may write :<math> \langle j' \, m' | T^{(k)}_{q \pm 1} | j \, m\rangle \propto \langle j \, m \, k \, (q \pm 1) | j' \, m' \rangle. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)