Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Wilson loop
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== ===Makeenko–Migdal loop equation=== Similarly to the [[functional derivative]] which acts on [[functional (mathematics)|functions of functions]], functions of loops admit two types of [[derivative]]s called the area derivative and the perimeter derivative. To define the former, consider a contour <math>\gamma</math> and another contour <math>\gamma_{\delta \sigma_{\mu\nu}}</math> which is the same contour but with an extra small loop at <math>x</math> in the <math>\mu</math>-<math>\nu</math> plane with area <math>\delta \sigma_{\mu\nu}=dx_\mu \wedge dx_\nu</math>. Then the area derivative of the loop functional <math>F[\gamma]</math> is defined through the same idea as the usual derivative, as the normalized difference between the functional of the two loops<ref>{{cite journal|last1=Migdal|first1=A.A.|authorlink1=Alexander Arkadyevich Migdal|date=1983|title=Loop Equations and 1/N Expansion|url=|journal=Phys. Rep.|volume=102|issue=4|pages=199–290|doi=10.1016/0370-1573(83)90076-5|pmid=|arxiv=|s2cid=|access-date=}}</ref> :<math> \frac{\delta F[\gamma]}{\delta \sigma_{\mu\nu}(x)} = \frac{1}{\delta \sigma_{\mu\nu}(x)}[F[\gamma_{\delta \sigma_{\mu\nu}}]-F[\gamma]]. </math> The perimeter derivative is similarly defined whereby now <math>\gamma_{\delta x_\mu}</math> is a slight deformation of the contour <math>\gamma</math> which at position <math>x</math> has a small extruding loop of length <math>\delta x_\mu</math> in the <math>\mu</math> direction and of zero area. The perimeter derivative <math>\partial_\mu^x</math> of the loop functional is then defined as :<math> \partial_\mu^x F[\gamma] = \frac{1}{\delta x_\mu}[F[\gamma_{\delta x_\mu}]-F[\gamma]]. </math> In the [[1/N expansion|large N-limit]], the Wilson loop vacuum expectation value satisfies a closed functional form equation called the Makeenko–Migdal equation<ref>{{cite journal|last1=Makeenko|first1=Y.M.|authorlink1=|last2=Migdal|first2=A.A.|authorlink2=Alexander Arkadyevich Migdal|date=1979|title=Exact Equation for the Loop Average in Multicolor QCD|url=|journal=Phys. Lett. B|volume=88|issue=1–2|pages=135–137|doi=10.1016/0370-2693(79)90131-X|pmid=|arxiv=|bibcode=1979PhLB...88..135M |s2cid=|access-date=}}</ref> :<math> \partial^x_\mu \frac{\delta}{\delta \sigma_{\mu\nu}(x)}\langle W[\gamma]\rangle = g^2 N \oint_\gamma dy_\nu \delta^{(D)}(x-y) \langle W[\gamma_{yx}]\rangle \langle W[\gamma_{xy}]\rangle. </math> Here <math>\gamma = \gamma_{xy}\cup \gamma_{yx}</math> with <math>\gamma_{xy}</math> being a line that does not close from <math>x</math> to <math>y</math>, with the two points however close to each other. The equation can also be written for finite <math>N</math>, but in this case it does not factorize and instead leads to expectation values of products of Wilson loops, rather than the product of their expectation values.<ref>{{cite book|last=Năstase|first=H.|author-link=Horațiu Năstase|date=2019|title=Introduction to Quantum Field Theory|url=|doi=|location=|publisher=Cambridge University Press|chapter=50|pages=469–472|isbn=978-1108493994}}</ref> This gives rise to an infinite chain of coupled equations for different Wilson loop expectation values, analogous to the [[Schwinger–Dyson equation]]s. The Makeenko–Migdal equation has been solved exactly in two dimensional <math>\text{U}(\infty)</math> theory.<ref>{{cite journal|last1=Kazakov|first1=V.A.|authorlink1=|last2=Kostov|first2=I.K.|authorlink2=|date=1980|title=Non-linear strings in two-dimensional U(∞) gauge theory|url=https://dx.doi.org/10.1016/0550-3213%2880%2990072-3|journal=Nuclear Physics B|volume=176|issue=1|pages=199–215|doi=10.1016/0550-3213(80)90072-3|pmid=|arxiv=|bibcode=1980NuPhB.176..199K |s2cid=|access-date=|url-access=subscription}}</ref> ===Mandelstam identities=== Gauge groups that admit fundamental representations in terms of <math>N\times N</math> matrices have Wilson loops that satisfy a set of identities called the Mandelstam identities, with these identities reflecting the particular properties of the underlying gauge group.<ref>{{cite journal|last1=Mandelstam|first1=S.|authorlink1=Stanley Mandelstam|date=1968|title=Feynman Rules for Electromagnetic and Yang–Mills Fields from the Gauge-Independent Field-Theoretic Formalism|url=https://link.aps.org/doi/10.1103/PhysRev.175.1580|journal=Phys. Rev.|volume=175|issue=5|pages=1580–1603|doi=10.1103/PhysRev.175.1580|pmid=|arxiv=|bibcode=1968PhRv..175.1580M |s2cid=|access-date=|url-access=subscription}}</ref> The identities apply to loops formed from two or more subloops, with <math>\gamma = \gamma_2 \circ \gamma_1</math> being a loop formed by first going around <math>\gamma_1</math> and then going around <math>\gamma_2</math>. The Mandelstam identity of the first kind states that <math>W[\gamma_1\circ \gamma_2] = W[\gamma_2 \circ \gamma_1]</math>, with this holding for any gauge group in any dimension. Mandelstam identities of the second kind are acquired by noting that in <math>N</math> dimensions, any object with <math>N+1</math> [[antisymmetric tensor|totally antisymmetric]] indices vanishes, meaning that <math>\delta^{a_1}_{[b_1}\delta^{a_2}_{b_2}\cdots \delta^{a_{N+1}}_{b_{N+1}]} = 0</math>. In the fundamental representation, the holonomies used to form the Wilson loops are <math>N\times N</math> [[matrix representation]]s of the gauge groups. Contracting <math>N+1</math> holonomies with the [[Kronecker delta|delta functions]] yields a set of identities between Wilson loops. These can be written in terms the objects <math>M_K</math> defined iteratively so that <math>M_1[\gamma] = W[\gamma]</math> and :<math> (K+1)M_{K+1}[\gamma_1, \dots, \gamma_{K+1}] = W[\gamma_{K+1}]M_K[\gamma_1,\dots, \gamma_K] - M_K[\gamma_1 \circ \gamma_{K+1},\gamma_2, \dots, \gamma_K] -\cdots - M_K[\gamma_1, \gamma_2, \dots, \gamma_K\circ \gamma_{K+1}]. </math> In this notation the Mandelstam identities of the second kind are<ref>{{cite book|last=Gambini|first=R.|author-link=|date=2008|title=Loops, Knots, Gauge Theories|url=|doi=|location=|publisher=|chapter=3|pages=63–67|isbn=978-0521654753}}</ref> :<math> M_{N+1}[\gamma_1, \dots, \gamma_{N+1}] = 0. </math> For example, for a <math>\text{U}(1)</math> gauge group this gives <math>W[\gamma_1]W[\gamma_2] = W[\gamma_1\circ \gamma_2]</math>. If the fundamental representation are matrices of unit [[determinant]], then it also holds that <math>M_N(\gamma, \dots, \gamma)=1</math>. For example, applying this identity to <math>\text{SU}(2)</math> gives :<math> W[\gamma_1]W[\gamma_2] = W[\gamma_1\circ \gamma_2^{-1}]+W[\gamma_1\circ \gamma_2]. </math> Fundamental representations consisting of [[unitary matrix|unitary matrices]] satisfy <math>W[\gamma] = W^*[\gamma^{-1}]</math>. Furthermore, while the equality <math>W[I] = N</math> holds for all gauge groups in the fundamental representations, for unitary groups it moreover holds that <math>|W[\gamma]|\leq N</math>. ===Renormalization=== Since Wilson loops are operators of the gauge fields, the [[regularization (physics)|regularization]] and [[renormalization]] of the underlying Yang–Mills theory fields and couplings does not prevent the Wilson loops from requiring additional renormalization corrections. In a renormalized Yang–Mills theory, the particular way that the Wilson loops get renormalized depends on the geometry of the loop under consideration. The main features are<ref>{{cite journal|last1=Korchemskaya|first1=I.A.|authorlink1=|last2=Korchemsky|first2=G.P.|authorlink2=|date=1992|title=On light-like Wilson loops|url=https://dx.doi.org/10.1016/0370-2693%2892%2991895-G|journal=Physics Letters B|volume=287|issue=1|pages=169–175|doi=10.1016/0370-2693(92)91895-G|pmid=|arxiv=|bibcode=1992PhLB..287..169K |s2cid=|access-date=|url-access=subscription}}</ref><ref>{{cite journal|last1=Polyakov|first1=A.M.|authorlink1=Alexander Markovich Polyakov|date=1980|title=Gauge fields as rings of glue|url=https://dx.doi.org/10.1016/0550-3213%2880%2990507-6|journal=Nuclear Physics B|volume=164|issue=|pages=171–188|doi=10.1016/0550-3213(80)90507-6|pmid=|arxiv=|bibcode=1980NuPhB.164..171P |s2cid=|access-date=|url-access=subscription}}</ref><ref>{{cite journal|last1=Brandt|first1=R.A.|authorlink1=|last2=Neri|first2=F.|authorlink2=|last3=Sato|first3=M.|authorlink3=|date=1981|title=Renormalization of loop functions for all loops|url=https://link.aps.org/doi/10.1103/PhysRevD.24.879|journal=Phys. Rev. D|volume=24|issue=4|pages=879–902|doi=10.1103/PhysRevD.24.879|pmid=|arxiv=|bibcode=1981PhRvD..24..879B |s2cid=|access-date=|url-access=subscription}}</ref><ref>{{cite journal|last1=Korchemsky|first1=G.P.|author-link2=Anatoly Radyushkin|last2=Radyushkin|first2=A.V.|date=1987|title=Renormalization of the Wilson loops beyond the leading order|url=https://dx.doi.org/10.1016/0550-3213%2887%2990277-X|journal=Nuclear Physics B|volume=283|issue=|pages=342–364|doi=10.1016/0550-3213(87)90277-X|pmid=|arxiv=|bibcode=1987NuPhB.283..342K |s2cid=|access-date=|url-access=subscription}}</ref> * Smooth non-intersecting curve: This can only have linear divergences proportional to the contour which can be removed through multiplicative renormalization. * Non-intersecting curve with [[cusp (singularity)|cusps]]: Each cusp results in an additional local multiplicative renormalization factor <math>Z[\phi]</math> that depends on the cusp angle <math>\phi</math>. * Self-intersections: This leads to operator mixing between the Wilson loops associated with the full loop and the subloops. * Lightlike segments: These give rise to additional logarithmic divergences.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)