Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Woodbury matrix identity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Binomial inverse theorem ==== If ''A'', ''B'', ''U'', ''V'' are matrices of sizes ''n''×''n'', ''k''×''k'', ''n''×''k'', ''k''×''n'', respectively, then <math display="block"> \left(A + UBV\right)^{-1} = A^{-1} - A^{-1}UB\left(B+BVA^{-1}UB\right)^{-1} BVA^{-1} </math> provided ''A'' and ''B'' + ''BVA''<sup>−1</sup>''UB'' are nonsingular. Nonsingularity of the latter requires that ''B''<sup>−1</sup> exist since it equals {{nowrap|''B''(''I'' + ''VA''<sup>−1</sup>''UB'')}} and the rank of the latter cannot exceed the rank of ''B''.<ref name=HS>{{cite journal | last1 = Henderson | first1 = H. V. | last2 = Searle | first2 = S. R. | year = 1981 | title = On deriving the inverse of a sum of matrices | url = http://ecommons.cornell.edu/bitstream/1813/32749/1/BU-647-M.pdf| journal = SIAM Review | volume = 23 | issue = 1 | pages = 53–60 | doi = 10.1137/1023004 | jstor = 2029838 | hdl = 1813/32749 | hdl-access = free }}</ref> Since ''B'' is invertible, the two ''B'' terms flanking the parenthetical quantity inverse in the right-hand side can be replaced with {{nowrap|(''B''<sup>−1</sup>)<sup>−1</sup>,}} which results in the original Woodbury identity. A variation for when ''B'' is singular and possibly even non-square:<ref name=HS/> <math display="block">(A + UBV)^{-1} = A^{-1} - A^{-1}U(I + BVA^{-1}U)^{-1}BVA^{-1}.</math> Formulas also exist for certain cases in which ''A'' is singular.<ref>Kurt S. Riedel, "A Sherman–Morrison–Woodbury Identity for Rank Augmenting Matrices with Application to Centering", ''SIAM Journal on Matrix Analysis and Applications'', 13 (1992)659-662, {{doi|10.1137/0613040}} [http://math.nyu.edu/mfdd/riedel/ranksiam.ps preprint] {{MR|1152773}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)