Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Young's modulus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Linear versus non-linear=== Young's modulus represents the factor of proportionality in [[Hooke's law]], which relates the stress and the strain. However, Hooke's law is only valid under the assumption of an ''elastic'' and ''linear'' response. Any real material will eventually fail and break when stretched over a very large distance or with a very large force; however, all solid materials exhibit nearly Hookean behavior for small enough strains or stresses. If the range over which Hooke's law is valid is large enough compared to the typical stress that one expects to apply to the material, the material is said to be linear. Otherwise (if the typical stress one would apply is outside the linear range), the material is said to be non-linear. [[Steel]], [[carbon (fiber)|carbon fiber]] and [[glass]] among others are usually considered linear materials, while other materials such as [[rubber]] and [[soils]] are non-linear. However, this is not an absolute classification: if very small stresses or strains are applied to a non-linear material, the response will be linear, but if very high stress or strain is applied to a linear material, the linear theory will not be enough. For example, as the linear theory implies [[Reversible process (thermodynamics)|reversibility]], it would be absurd to use the linear theory to describe the failure of a steel bridge under a high load; although steel is a linear material for most applications, it is not in such a case of catastrophic failure. In [[solid mechanics]], the slope of the [[stress–strain curve]] at any point is called the [[tangent modulus]]. It can be experimentally determined from the [[slope]] of a stress–strain curve created during [[tensile test]]s conducted on a sample of the material.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)