Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generating function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Introducing a free parameter (snake oil method)=== Sometimes the sum {{math|''s<sub>n</sub>''}} is complicated, and it is not always easy to evaluate. The "Free Parameter" method is another method (called "snake oil" by H. Wilf) to evaluate these sums. Both methods discussed so far have {{mvar|n}} as limit in the summation. When n does not appear explicitly in the summation, we may consider {{mvar|n}} as a "free" parameter and treat {{math|''s<sub>n</sub>''}} as a coefficient of {{math|''F''(''z'') {{=}} Ξ£ ''s<sub>n</sub>'' ''z<sup>n</sup>''}}, change the order of the summations on {{mvar|n}} and {{mvar|k}}, and try to compute the inner sum. For example, if we want to compute <math display="block">s_n = \sum_{k = 0}^\infty{\binom{n+k}{m+2k}\binom{2k}{k}\frac{(-1)^k}{k+1}}\,, \quad m,n \in \mathbb{N}_0\,,</math> we can treat {{mvar|n}} as a "free" parameter, and set <math display="block">F(z) = \sum_{n = 0}^\infty{\left( \sum_{k = 0}^\infty{\binom{n+k}{m+2k}\binom{2k}{k}\frac{(-1)^k}{k+1}}\right) }z^n\,.</math> Interchanging summation ("snake oil") gives <math display="block">F(z) = \sum_{k = 0}^\infty{\binom{2k}{k}\frac{(-1)^k}{k+1} z^{-k}}\sum_{n = 0}^\infty{\binom{n+k}{m+2k} z^{n+k}}\,.</math> Now the inner sum is {{math|{{sfrac|''z''<sup>''m'' + 2''k''</sup>|(1 β ''z'')<sup>''m'' + 2''k'' + 1</sup>}}}}. Thus <math display="block">\begin{align} F(z) &= \frac{z^m}{(1-z)^{m+1}}\sum_{k = 0}^\infty{\frac{1}{k+1}\binom{2k}{k}\left(\frac{-z}{(1-z)^2}\right)^k} \\[4px] &= \frac{z^m}{(1-z)^{m+1}}\sum_{k = 0}^\infty{C_k\left(\frac{-z}{(1-z)^2}\right)^k} &\text{where } C_k = k\text{th Catalan number} \\[4px] &= \frac{z^m}{(1-z)^{m+1}}\frac{1-\sqrt{1+\frac{4z}{(1-z)^2}}}{\frac{-2z}{(1-z)^2}} \\[4px] &= \frac{-z^{m-1}}{2(1-z)^{m-1}}\left(1-\frac{1+z}{1-z}\right) \\[4px] &= \frac{z^m}{(1-z)^m} = z\frac{z^{m-1}}{(1-z)^m}\,. \end{align}</math> Then we obtain <math display="block">s_n = \begin{cases} \displaystyle\binom{n-1}{m-1} & \text{for } m \geq 1 \,, \\ {} [n = 0] & \text{for } m = 0\,. \end{cases}</math> It is instructive to use the same method again for the sum, but this time take {{mvar|m}} as the free parameter instead of {{mvar|n}}. We thus set <math display="block">G(z) = \sum_{m = 0}^\infty\left( \sum_{k = 0}^\infty \binom{n+k}{m+2k}\binom{2k}{k}\frac{(-1)^k}{k+1} \right) z^m\,.</math> Interchanging summation ("snake oil") gives <math display="block">G(z) = \sum_{k = 0}^\infty \binom{2k}{k}\frac{(-1)^k}{k+1} z^{-2k} \sum_{m = 0}^\infty \binom{n+k}{m+2k} z^{m+2k}\,.</math> Now the inner sum is {{math|(1 + ''z'')<sup>''n'' + ''k''</sup>}}. Thus <math display="block">\begin{align} G(z) &= (1+z)^n \sum_{k = 0}^\infty \frac{1}{k+1}\binom{2k}{k}\left(\frac{-(1+z)}{z^2}\right)^k \\[4px] &= (1+z)^n \sum_{k = 0}^\infty C_k \,\left(\frac{-(1+z)}{z^2}\right)^k &\text{where } C_k = k\text{th Catalan number} \\[4px] &= (1+z)^n \,\frac{1-\sqrt{1+\frac{4(1+z)}{z^2}}}{\frac{-2(1+z)}{z^2}} \\[4px] &= (1+z)^n \,\frac{z^2-z\sqrt{z^2+4+4z}}{-2(1+z)} \\[4px] &= (1+z)^n \,\frac{z^2-z(z+2)}{-2(1+z)} \\[4px] &= (1+z)^n \,\frac{-2z}{-2(1+z)} = z(1+z)^{n-1}\,. \end{align}</math> Thus we obtain <math display="block">s_n = \left[z^m\right] z(1+z)^{n-1} = \left[z^{m-1}\right] (1+z)^{n-1} = \binom{n-1}{m-1}\,,</math> for {{math|''m'' β₯ 1}} as before.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)