Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Beta distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=====Two unknown parameters===== Two unknown parameters (<math> (\hat{\alpha}, \hat{\beta})</math> of a beta distribution supported in the [0,1] interval) can be estimated, using the method of moments, with the first two moments (sample mean and sample variance) as follows. Let: : <math>\text{sample mean(X)}=\bar{x} = \frac{1}{N}\sum_{i=1}^N X_i</math> be the [[sample mean]] estimate and : <math>\text{sample variance(X)} =\bar{v} = \frac{1}{N-1}\sum_{i=1}^N (X_i - \bar{x})^2</math> be the [[sample variance]] estimate. The [[method of moments (statistics)|method-of-moments]] estimates of the parameters are :<math>\hat{\alpha} = \bar{x} \left(\frac{\bar{x} (1 - \bar{x})}{\bar{v}} - 1 \right),</math> if <math>\bar{v} <\bar{x}(1 - \bar{x}),</math> : <math>\hat{\beta} = (1-\bar{x}) \left(\frac{\bar{x} (1 - \bar{x})}{\bar{v}} - 1 \right),</math> if <math>\bar{v}<\bar{x}(1 - \bar{x}).</math> <!-- MLE's should be in this section too. Maybe I'll be back.... --> When the distribution is required over a known interval other than [0, 1] with random variable ''X'', say [''a'', ''c''] with random variable ''Y'', then replace <math>\bar{x}</math> with <math>\frac{\bar{y}-a}{c-a},</math> and <math>\bar{v}</math> with <math>\frac{\bar{v_Y}}{(c-a)^2}</math> in the above couple of equations for the shape parameters (see the "Four unknown parameters" section below),<ref>{{Cite web|url=https://www.itl.nist.gov/div898/handbook/eda/section3/eda366h.htm|title=1.3.6.6.17. Beta Distribution|website=www.itl.nist.gov}}</ref> where: : <math>\text{sample mean(Y)}=\bar{y} = \frac{1}{N}\sum_{i=1}^N Y_i</math> : <math>\text{sample variance(Y)} = \bar{v_Y} = \frac{1}{N-1}\sum_{i=1}^N (Y_i - \bar{y})^2</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)