Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generating function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====The Stirling numbers modulo small integers==== The [[Stirling numbers of the first kind#Congruences|main article]] on the Stirling numbers generated by the finite products <math display="block">S_n(x) := \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} x^k = x(x+1)(x+2) \cdots (x+n-1)\,,\quad n \geq 1\,, </math> provides an overview of the congruences for these numbers derived strictly from properties of their generating function as in Section 4.6 of Wilf's stock reference ''Generatingfunctionology''. We repeat the basic argument and notice that when reduces modulo 2, these finite product generating functions each satisfy <math display="block">S_n(x) = [x(x+1)] \cdot [x(x+1)] \cdots = x^{\left\lceil \frac{n}{2} \right\rceil} (x+1)^{\left\lfloor \frac{n}{2} \right\rfloor}\,, </math> which implies that the parity of these [[Stirling numbers]] matches that of the binomial coefficient <math display="block">\begin{bmatrix} n \\ k \end{bmatrix} \equiv \binom{\left\lfloor \frac{n}{2} \right\rfloor}{k - \left\lceil \frac{n}{2} \right\rceil} \pmod{2}\,, </math> and consequently shows that {{math|{{resize|150%|[}}{{su|p=''n''|b=''k''|a=c}}{{resize|150%|]}}}} is even whenever {{math|''k'' < β {{sfrac|''n''|2}} β}}. Similarly, we can reduce the right-hand-side products defining the Stirling number generating functions modulo 3 to obtain slightly more complicated expressions providing that <math display="block">\begin{align} \begin{bmatrix} n \\ m \end{bmatrix} & \equiv [x^m] \left( x^{\left\lceil \frac{n}{3} \right\rceil} (x+1)^{\left\lceil \frac{n-1}{3} \right\rceil} (x+2)^{\left\lfloor \frac{n}{3} \right\rfloor} \right) && \pmod{3} \\ & \equiv \sum_{k=0}^{m} \begin{pmatrix} \left\lceil \frac{n-1}{3} \right\rceil \\ k \end{pmatrix} \begin{pmatrix} \left\lfloor \frac{n}{3} \right\rfloor \\ m-k - \left\lceil \frac{n}{3} \right\rceil \end{pmatrix} \times 2^{\left\lceil \frac{n}{3} \right\rceil + \left\lfloor \frac{n}{3} \right\rfloor -(m-k)} && \pmod{3}\,. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)