Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generating function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Tables of special generating functions == An initial listing of special mathematical series is found [[List of mathematical series|here]]. A number of useful and special sequence generating functions are found in Section 5.4 and 7.4 of ''Concrete Mathematics'' and in Section 2.5 of Wilf's ''Generatingfunctionology''. Other special generating functions of note include the entries in the next table, which is by no means complete.<ref>See also the ''1031 Generating Functions'' found in {{cite thesis |first=Simon |last=Plouffe |title=Approximations de séries génératrices et quelques conjectures |trans-title=Approximations of generating functions and a few conjectures |year=1992 |type=Masters |publisher=Université du Québec à Montréal |language=fr |arxiv=0911.4975}}</ref> {{expand section|Lists of special and special sequence generating functions. The next table is a start|date=April 2017}} {| class="wikitable" |- ! Formal power series !! Generating-function formula !! Notes |- | <math>\sum_{n = 0}^\infty \binom{m+n}{n} \left(H_{n+m}-H_m\right) z^n</math> || <math>\frac{1}{(1-z)^{m+1}} \ln \frac{1}{1-z}</math> || <math>H_n</math> is a first-order [[harmonic number]] |- | <math>\sum_{n = 0}^\infty B_n \frac{z^n}{n!}</math> || <math>\frac{z}{e^z-1}</math> || <math>B_n</math> is a [[Bernoulli number]] |- | <math>\sum_{n = 0}^\infty F_{mn} z^n</math> || <math>\frac{F_m z}{1-(F_{m-1}+F_{m+1})z+(-1)^m z^2}</math> || <math>F_n</math> is a [[Fibonacci number]] and <math>m \in \mathbb{Z}^{+}</math> |- | <math>\sum_{n = 0}^\infty \left\{\begin{matrix} n \\ m \end{matrix} \right\} z^n</math> || <math>(z^{-1})^{\overline{-m}} = \frac{z^m}{(1-z)(1-2z)\cdots(1-mz)}</math> || <math>x^{\overline{n}}</math> denotes the [[rising factorial]], or [[Pochhammer symbol]] and some integer <math>m \geq 0</math> |- | <math>\sum_{n = 0}^\infty \left[\begin{matrix} n \\ m \end{matrix} \right] z^n</math> || <math>z^{\overline{m}} = z(z+1) \cdots (z+m-1)</math> |- | <math>\sum_{n = 1}^\infty \frac{(-1)^{n-1}4^n (4^n-2) B_{2n} z^{2n}}{(2n) \cdot (2n)!}</math> || <math>\ln \frac{\tan(z)}{z}</math> |- | <math>\sum_{n = 0}^\infty \frac{(1/2)^{\overline{n}} z^{2n}}{(2n+1) \cdot n!}</math> || <math>z^{-1} \arcsin(z)</math> |- | <math>\sum_{n = 0}^\infty H_n^{(s)} z^n</math> || <math>\frac{\operatorname{Li}_s(z)}{1-z}</math> || <math>\operatorname{Li}_s(z)</math> is the [[polylogarithm]] function and <math>H_n^{(s)}</math> is a generalized [[harmonic number]] for <math>\Re(s) > 1</math> |- | <math>\sum_{n = 0}^\infty n^m z^n</math> || <math>\sum_{0 \leq j \leq m} \left\{\begin{matrix} m \\ j \end{matrix} \right\} \frac{j! \cdot z^j}{(1-z)^{j+1}}</math> || <math>\left\{\begin{matrix} n \\ m \end{matrix} \right\}</math> is a [[Stirling number of the second kind]] and where the individual terms in the expansion satisfy <math>\frac{z^i}{(1-z)^{i+1}} = \sum_{k=0}^{i} \binom{i}{k} \frac{(-1)^{k-i}}{(1-z)^{k+1}}</math> |- | <math>\sum_{k < n} \binom{n-k}{k} \frac{n}{n-k} z^k</math> || <math>\left(\frac{1+\sqrt{1+4z}}{2}\right)^n + \left(\frac{1-\sqrt{1+4z}}{2}\right)^n</math> || |- | <math>\sum_{n_1, \ldots, n_m \geq 0} \min(n_1, \ldots, n_m) z_1^{n_1} \cdots z_m^{n_m}</math> || <math>\frac{z_1 \cdots z_m}{(1-z_1) \cdots (1-z_m) (1-z_1 \cdots z_m)}</math> || The two-variable case is given by <math>M(w, z) := \sum_{m,n \geq 0} \min(m, n) w^m z^n = \frac{wz}{(1-w)(1-z)(1-wz)}</math> |- | <math>\sum_{n = 0}^\infty \binom{s}{n} z^n</math> || <math>(1+z)^s</math> || <math>s \in \mathbb{C}</math> |- | <math>\sum_{n = 0}^\infty \binom{n}{k} z^n</math> || <math>\frac{z^k}{(1-z)^{k+1}}</math> || <math>k \in \mathbb{N}</math> |- |<math>\sum_{n = 1}^\infty \log{(n)} z^n</math>||<math>\left.-\frac{\partial}{\partial s}\operatorname{{Li}_s(z)}\right|_{s=0}</math> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)