Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Distribution (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Further reading== * M. J. Lighthill (1959). ''Introduction to Fourier Analysis and Generalised Functions''. Cambridge University Press. {{ISBN|0-521-09128-4}} (requires very little knowledge of analysis; defines distributions as limits of sequences of functions under integrals) * [[Vasily Vladimirov|V.S. Vladimirov]] (2002). ''Methods of the theory of generalized functions''. Taylor & Francis. {{ISBN|0-415-27356-0}} * {{springer|id=G/g043810|title=Generalized function|first=V.S.|last=Vladimirov|author-link=Vasilii Sergeevich Vladimirov|year=2001}}. * {{springer|id=G/g043840|title=Generalized functions, space of|first=V.S.|last=Vladimirov|author-link=Vasilii Sergeevich Vladimirov|year=2001}}. * {{springer|id=G/g043820|title=Generalized function, derivative of a|first=V.S.|last=Vladimirov|author-link=Vasilii Sergeevich Vladimirov|year=2001}}. * {{springer|id=G/g043830|title=Generalized functions, product of|first=V.S.|last=Vladimirov|author-link=Vasilii Sergeevich Vladimirov|year=2001}}. * {{springer|id=G/g130030|title=Generalized function algebras|first=Michael|last=Oberguggenberger|year=2001}}. {{Functional analysis}} {{Topological vector spaces}} [[Category:Articles containing proofs]] [[Category:Functional analysis]] [[Category:Generalizations of the derivative]] [[Category:Generalized functions]] [[Category:Smooth functions]] [[Category:Schwartz distributions]] [[Category:Differential equations]] [[Category:Linear functionals]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)