Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fourier transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Tables of important Fourier transforms == The following tables record some closed-form Fourier transforms. For functions {{math|''f''(''x'')}} and {{math|''g''(''x'')}} denote their Fourier transforms by {{math|''f̂''}} and {{math|''ĝ''}}. Only the three most common conventions are included. It may be useful to notice that entry 105 gives a relationship between the Fourier transform of a function and the original function, which can be seen as relating the Fourier transform and its inverse. === Functional relationships, one-dimensional === The Fourier transforms in this table may be found in {{harvtxt|Erdélyi|1954}} or {{harvtxt|Kammler|2000|loc=appendix}}. {| class="wikitable" ! !! Function !! Fourier transform {{br}} unitary, ordinary frequency !! Fourier transform {{br}} unitary, angular frequency !! Fourier transform {{br}} non-unitary, angular frequency !!Remarks |- | |<math> f(x)\,</math> |<math>\begin{align} &\widehat{f}(\xi) \triangleq \widehat {f_1}(\xi) \\&= \int_{-\infty}^\infty f(x) e^{-i 2\pi \xi x}\, dx \end{align}</math> |<math>\begin{align} &\widehat{f}(\omega) \triangleq \widehat {f_2}(\omega) \\&= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align}</math> |<math>\begin{align} &\widehat{f}(\omega) \triangleq \widehat {f_3}(\omega) \\&= \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align}</math> |Definitions |- | 101 |<math> a\, f(x) + b\, g(x)\,</math> |<math> a\, \widehat{f}(\xi) + b\, \widehat{g}(\xi)\,</math> |<math> a\, \widehat{f}(\omega) + b\, \widehat{g}(\omega)\,</math> |<math> a\, \widehat{f}(\omega) + b\, \widehat{g}(\omega)\,</math> |Linearity |- | 102 |<math> f(x - a)\,</math> |<math> e^{-i 2\pi \xi a} \widehat{f}(\xi)\,</math> |<math> e^{- i a \omega} \widehat{f}(\omega)\,</math> |<math> e^{- i a \omega} \widehat{f}(\omega)\,</math> |Shift in time domain |- | 103 |<math> f(x)e^{iax}\,</math> |<math> \widehat{f} \left(\xi - \frac{a}{2\pi}\right)\,</math> |<math> \widehat{f}(\omega - a)\,</math> |<math> \widehat{f}(\omega - a)\,</math> |Shift in frequency domain, dual of 102 |- | 104 |<math> f(a x)\,</math> |<math> \frac{1}{|a|} \widehat{f}\left( \frac{\xi}{a} \right)\,</math> |<math> \frac{1}{|a|} \widehat{f}\left( \frac{\omega}{a} \right)\,</math> |<math> \frac{1}{|a|} \widehat{f}\left( \frac{\omega}{a} \right)\,</math> |Scaling in the time domain. If {{math|{{abs|''a''}}}} is large, then {{math|''f''(''ax'')}} is concentrated around 0 and{{br}}<math> \frac{1}{|a|}\hat{f} \left( \frac{\omega}{a} \right)\,</math>{{br}}spreads out and flattens. |- | 105 |<math> \widehat {f_n}(x)\,</math> |<math> \widehat {f_1}(x) \ \stackrel{\mathcal{F}_1}{\longleftrightarrow}\ f(-\xi)\,</math> |<math> \widehat {f_2}(x) \ \stackrel{\mathcal{F}_2}{\longleftrightarrow}\ f(-\omega)\,</math> |<math> \widehat {f_3}(x) \ \stackrel{\mathcal{F}_3}{\longleftrightarrow}\ 2\pi f(-\omega)\,</math> |The same transform is applied twice, but ''x'' replaces the frequency variable (''ξ'' or ''ω'') after the first transform. |- | 106 |<math> \frac{d^n f(x)}{dx^n}\,</math> |<math> (i 2\pi \xi)^n \widehat{f}(\xi)\,</math> |<math> (i\omega)^n \widehat{f}(\omega)\,</math> |<math> (i\omega)^n \widehat{f}(\omega)\,</math> |n{{superscript|th}}-order derivative. As {{math|''f''}} is a [[Schwartz space|Schwartz function]] |- |106.5 |<math>\int_{-\infty}^{x} f(\tau) d \tau</math> |<math>\frac{\widehat{f}(\xi)}{i 2 \pi \xi} + C \, \delta(\xi)</math> |<math>\frac{\widehat{f} (\omega)}{i\omega} + \sqrt{2 \pi} C \delta(\omega)</math> |<math>\frac{\widehat{f} (\omega)}{i\omega} + 2 \pi C \delta(\omega)</math> |Integration.<ref>{{Cite web |date=2015 |orig-date=2010 |title=The Integration Property of the Fourier Transform |url=https://www.thefouriertransform.com/transform/integration.php |url-status=live |archive-url=https://web.archive.org/web/20220126171340/https://www.thefouriertransform.com/transform/integration.php |archive-date=2022-01-26 |access-date=2023-08-20 |website=The Fourier Transform .com}}</ref> Note: <math>\delta</math> is the [[Dirac delta function]] and <math>C</math> is the average ([[DC component|DC]]) value of <math>f(x)</math> such that <math>\int_{-\infty}^\infty (f(x) - C) \, dx = 0</math> |- | 107 |<math> x^n f(x)\,</math> |<math> \left (\frac{i}{2\pi}\right)^n \frac{d^n \widehat{f}(\xi)}{d\xi^n}\,</math> |<math> i^n \frac{d^n \widehat{f}(\omega)}{d\omega^n}</math> |<math> i^n \frac{d^n \widehat{f}(\omega)}{d\omega^n}</math> |This is the dual of 106 |- | 108 |<math> (f * g)(x)\,</math> |<math> \widehat{f}(\xi) \widehat{g}(\xi)\,</math> |<math> \sqrt{2\pi}\ \widehat{f}(\omega) \widehat{g}(\omega)\,</math> |<math> \widehat{f}(\omega) \widehat{g}(\omega)\,</math> |The notation {{math|''f'' ∗ ''g''}} denotes the [[convolution]] of {{mvar|f}} and {{mvar|g}} — this rule is the [[convolution theorem]] |- | 109 |<math> f(x) g(x)\,</math> |<math> \left(\widehat{f} * \widehat{g}\right)(\xi)\,</math> |<math> \frac{1}\sqrt{2\pi}\left(\widehat{f} * \widehat{g}\right)(\omega)\,</math> |<math> \frac{1}{2\pi}\left(\widehat{f} * \widehat{g}\right)(\omega)\,</math> |This is the dual of 108 |- | 110 |For {{math|''f''(''x'')}} purely real |<math> \widehat{f}(-\xi) = \overline{\widehat{f}(\xi)}\,</math> |<math> \widehat{f}(-\omega) = \overline{\widehat{f}(\omega)}\,</math> |<math> \widehat{f}(-\omega) = \overline{\widehat{f}(\omega)}\,</math> |Hermitian symmetry. {{math|{{overline|''z''}}}} indicates the [[complex conjugate]]. |- <!-- A Symmetry section has been added instead of this. | 111 |For {{math|''f''(''x'')}} purely real and [[even function|even]] | colspan=3 align=center |<math>\widehat f </math> is a purely real and [[even function]]. | |- | 112 |For {{math|''f''(''x'')}} purely real and [[odd function|odd]] | colspan=3 align=center |<math>\widehat f </math> is a purely [[imaginary number|imaginary]] and [[odd function]]. | |--> | 113 |For {{math|''f''(''x'')}} purely imaginary |<math> \widehat{f}(-\xi) = -\overline{\widehat{f}(\xi)}\,</math> |<math> \widehat{f}(-\omega) = -\overline{\widehat{f}(\omega)}\,</math> |<math> \widehat{f}(-\omega) = -\overline{\widehat{f}(\omega)}\,</math> |{{math|{{overline|''z''}}}} indicates the [[complex conjugate]]. |- | 114 | <math> \overline{f(x)}</math>|| <math> \overline{\widehat{f}(-\xi)}</math> || <math> \overline{\widehat{f}(-\omega)}</math> || <math> \overline{\widehat{f}(-\omega)}</math> || [[Complex conjugate|Complex conjugation]], generalization of 110 and 113 |- |115 |<math> f(x) \cos (a x)</math> |<math> \frac{ \widehat{f}\left(\xi - \frac{a}{2\pi}\right)+\widehat{f}\left(\xi+\frac{a}{2\pi}\right)}{2}</math> |<math> \frac{\widehat{f}(\omega-a)+\widehat{f}(\omega+a)}{2}\,</math> |<math> \frac{\widehat{f}(\omega-a)+\widehat{f}(\omega+a)}{2}</math> |This follows from rules 101 and 103 using [[Euler's formula]]:{{br}}<math>\cos(a x) = \frac{e^{i a x} + e^{-i a x}}{2}.</math> |- |116 |<math> f(x)\sin( ax)</math> |<math> \frac{\widehat{f}\left(\xi-\frac{a}{2\pi}\right)-\widehat{f}\left(\xi+\frac{a}{2\pi}\right)}{2i}</math> |<math> \frac{\widehat{f}(\omega-a)-\widehat{f}(\omega+a)}{2i}</math> |<math> \frac{\widehat{f}(\omega-a)-\widehat{f}(\omega+a)}{2i}</math> |This follows from 101 and 103 using [[Euler's formula]]:{{br}}<math>\sin(a x) = \frac{e^{i a x} - e^{-i a x}}{2i}.</math> |} === Square-integrable functions, one-dimensional === The Fourier transforms in this table may be found in {{harvtxt|Campbell|Foster|1948}}, {{harvtxt|Erdélyi|1954}}, or {{harvtxt|Kammler|2000|loc=appendix}}. {| class="wikitable" ! !! Function !! Fourier transform {{br}} unitary, ordinary frequency !! Fourier transform {{br}} unitary, angular frequency !! Fourier transform {{br}} non-unitary, angular frequency !! Remarks |- | |<math> f(x)\,</math> |<math>\begin{align} &\hat{f}(\xi) \triangleq \hat f_1(\xi) \\&= \int_{-\infty}^\infty f(x) e^{-i 2\pi \xi x}\, dx \end{align}</math> |<math>\begin{align} &\hat{f}(\omega) \triangleq \hat f_2(\omega) \\&= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align}</math> |<math>\begin{align} &\hat{f}(\omega) \triangleq \hat f_3(\omega) \\&= \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align}</math> |Definitions |- |{{anchor|rect}} 201 |<math> \operatorname{rect}(a x) \,</math> |<math> \frac{1}{|a|}\, \operatorname{sinc}\left(\frac{\xi}{a}\right)</math> |<math> \frac{1}{\sqrt{2 \pi a^2}}\, \operatorname{sinc}\left(\frac{\omega}{2\pi a}\right)</math> |<math> \frac{1}{|a|}\, \operatorname{sinc}\left(\frac{\omega}{2\pi a}\right)</math> |The [[rectangular function|rectangular pulse]] and the ''normalized'' [[sinc function]], here defined as {{math|1=sinc(''x'') = {{sfrac|sin(π''x'')|π''x''}}}} |- | 202 |<math> \operatorname{sinc}(a x)\,</math> |<math> \frac{1}{|a|}\, \operatorname{rect}\left(\frac{\xi}{a} \right)\,</math> |<math> \frac{1}{\sqrt{2\pi a^2}}\, \operatorname{rect}\left(\frac{\omega}{2 \pi a}\right)</math> |<math> \frac{1}{|a|}\, \operatorname{rect}\left(\frac{\omega}{2 \pi a}\right)</math> |Dual of rule 201. The [[rectangular function]] is an ideal [[low-pass filter]], and the [[sinc function]] is the [[Anticausal system|non-causal]] impulse response of such a filter. The [[sinc function]] is defined here as {{math|1=sinc(''x'') = {{sfrac|sin(π''x'')|π''x''}}}} |- | 203 |<math> \operatorname{sinc}^2 (a x)</math> |<math> \frac{1}{|a|}\, \operatorname{tri} \left( \frac{\xi}{a} \right) </math> |<math> \frac{1}{\sqrt{2\pi a^2}}\, \operatorname{tri} \left( \frac{\omega}{2\pi a} \right) </math> |<math> \frac{1}{|a|}\, \operatorname{tri} \left( \frac{\omega}{2\pi a} \right) </math> | The function {{math|tri(''x'')}} is the [[triangular function]] |- | 204 |<math> \operatorname{tri} (a x)</math> |<math> \frac{1}{|a|}\, \operatorname{sinc}^2 \left( \frac{\xi}{a} \right) \,</math> |<math> \frac{1}{\sqrt{2\pi a^2}} \, \operatorname{sinc}^2 \left( \frac{\omega}{2\pi a} \right) </math> |<math> \frac{1}{|a|} \, \operatorname{sinc}^2 \left( \frac{\omega}{2\pi a} \right) </math> | Dual of rule 203. |- | 205 |<math> e^{- a x} u(x) \,</math> |<math> \frac{1}{a + i 2\pi \xi}</math> |<math> \frac{1}{\sqrt{2 \pi} (a + i \omega)}</math> |<math> \frac{1}{a + i \omega}</math> |The function {{math|''u''(''x'')}} is the [[Heaviside step function|Heaviside unit step function]] and {{math|''a'' > 0}}. |- | 206 |<math> e^{-\alpha x^2}\,</math> |<math> \sqrt{\frac{\pi}{\alpha}}\, e^{-\frac{(\pi \xi)^2}{\alpha}}</math> |<math> \frac{1}{\sqrt{2 \alpha}}\, e^{-\frac{\omega^2}{4 \alpha}}</math> |<math> \sqrt{\frac{\pi}{\alpha}}\, e^{-\frac{\omega^2}{4 \alpha}}</math> |This shows that, for the unitary Fourier transforms, the [[Gaussian function]] {{math|''e''<sup>−''αx''<sup>2</sup></sup>}} is its own Fourier transform for some choice of {{mvar|α}}. For this to be integrable we must have {{math|Re(''α'') > 0}}. |- | 208 |<math> e^{-a|x|} \,</math> |<math> \frac{2 a}{a^2 + 4 \pi^2 \xi^2} </math> |<math> \sqrt{\frac{2}{\pi}} \, \frac{a}{a^2 + \omega^2} </math> |<math> \frac{2a}{a^2 + \omega^{2}} </math> |For {{math|Re(''a'') > 0}}. That is, the Fourier transform of a [[Laplace distribution|two-sided decaying exponential function]] is a [[Lorentzian function]]. |- | 209 |<math> \operatorname{sech}(a x) \,</math> |<math> \frac{\pi}{a} \operatorname{sech} \left( \frac{\pi^2}{ a} \xi \right)</math> |<math> \frac{1}{a}\sqrt{\frac{\pi}{2}} \operatorname{sech}\left( \frac{\pi}{2 a} \omega \right)</math> |<math> \frac{\pi}{a}\operatorname{sech}\left( \frac{\pi}{2 a} \omega \right)</math> |[[Hyperbolic function|Hyperbolic secant]] is its own Fourier transform |- | 210 |<math> e^{-\frac{a^2 x^2}2} H_n(a x)\,</math> |<math> \frac{\sqrt{2\pi}(-i)^n}{a} e^{-\frac{2\pi^2\xi^2}{a^2}} H_n\left(\frac{2\pi\xi}a\right)</math> |<math> \frac{(-i)^n}{a} e^{-\frac{\omega^2}{2 a^2}} H_n\left(\frac \omega a\right)</math> |<math> \frac{(-i)^n \sqrt{2\pi}}{a} e^{-\frac{\omega^2}{2 a^2}} H_n\left(\frac \omega a \right)</math> |{{math|''H<sub>n</sub>''}} is the {{mvar|n}}th-order [[Hermite polynomial]]. If {{math|''a'' {{=}} 1}} then the Gauss–Hermite functions are [[eigenfunction]]s of the Fourier transform operator. For a derivation, see [[Hermite polynomials#Hermite functions as eigenfunctions of the Fourier transform|Hermite polynomial]]. The formula reduces to 206 for {{math|''n'' {{=}} 0}}. |} === Distributions, one-dimensional === The Fourier transforms in this table may be found in {{harvtxt|Erdélyi|1954}} or {{harvtxt|Kammler|2000|loc=appendix}}. {| class="wikitable" ! !! Function !! Fourier transform {{br}} unitary, ordinary frequency !! Fourier transform {{br}} unitary, angular frequency !! Fourier transform {{br}} non-unitary, angular frequency !! Remarks |- | |<math> f(x)\,</math> |<math>\begin{align} &\hat{f}(\xi) \triangleq \hat f_1(\xi) \\&= \int_{-\infty}^\infty f(x) e^{-i 2\pi \xi x}\, dx \end{align}</math> |<math>\begin{align} &\hat{f}(\omega) \triangleq \hat f_2(\omega) \\&= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align}</math> |<math>\begin{align} &\hat{f}(\omega) \triangleq \hat f_3(\omega) \\&= \int_{-\infty}^\infty f(x) e^{-i \omega x}\, dx \end{align}</math> |Definitions |- | 301 |<math> 1</math> |<math> \delta(\xi)</math> |<math> \sqrt{2\pi}\, \delta(\omega)</math> |<math> 2\pi\delta(\omega)</math> |The distribution {{math|''δ''(''ξ'')}} denotes the [[Dirac delta function]]. |- | 302 |<math> \delta(x)\,</math> |<math> 1</math> |<math> \frac{1}{\sqrt{2\pi}}\,</math> |<math> 1</math> |Dual of rule 301. |- | 303 |<math> e^{i a x}</math> |<math> \delta\left(\xi - \frac{a}{2\pi}\right)</math> |<math> \sqrt{2 \pi}\, \delta(\omega - a)</math> |<math> 2 \pi\delta(\omega - a)</math> |This follows from 103 and 301. |- | 304 |<math> \cos (a x)</math> |<math> \frac{ \delta\left(\xi - \frac{a}{2\pi}\right)+\delta\left(\xi+\frac{a}{2\pi}\right)}{2}</math> |<math> \sqrt{2 \pi}\,\frac{\delta(\omega-a)+\delta(\omega+a)}{2}</math> |<math> \pi\left(\delta(\omega-a)+\delta(\omega+a)\right)</math> |This follows from rules 101 and 303 using [[Euler's formula]]:{{br}}<math>\cos(a x) = \frac{e^{i a x} + e^{-i a x}}{2}.</math> |- | 305 |<math> \sin( ax)</math> |<math> \frac{\delta\left(\xi-\frac{a}{2\pi}\right)-\delta\left(\xi+\frac{a}{2\pi}\right)}{2i}</math> |<math> \sqrt{2 \pi}\,\frac{\delta(\omega-a)-\delta(\omega+a)}{2i}</math> |<math> -i\pi\bigl(\delta(\omega-a)-\delta(\omega+a)\bigr)</math> |This follows from 101 and 303 using{{br}}<math>\sin(a x) = \frac{e^{i a x} - e^{-i a x}}{2i}.</math> |- | 306 |<math> \cos \left( a x^2 \right) </math> |<math> \sqrt{\frac{\pi}{a}} \cos \left( \frac{\pi^2 \xi^2}{a} - \frac{\pi}{4} \right) </math> |<math> \frac{1}{\sqrt{2 a}} \cos \left( \frac{\omega^2}{4 a} - \frac{\pi}{4} \right) </math> |<math> \sqrt{\frac{\pi}{a}} \cos \left( \frac{\omega^2}{4a} - \frac{\pi}{4} \right) </math> |This follows from 101 and 207 using{{br}}<math>\cos(a x^2) = \frac{e^{i a x^2} + e^{-i a x^2}}{2}.</math> |- | 307 |<math> \sin \left( a x^2 \right) </math> |<math> - \sqrt{\frac{\pi}{a}} \sin \left( \frac{\pi^2 \xi^2}{a} - \frac{\pi}{4} \right) </math> |<math> \frac{-1}{\sqrt{2 a}} \sin \left( \frac{\omega^2}{4 a} - \frac{\pi}{4} \right) </math> |<math> -\sqrt{\frac{\pi}{a}}\sin \left( \frac{\omega^2}{4a} - \frac{\pi}{4} \right)</math> |This follows from 101 and 207 using{{br}}<math>\sin(a x^2) = \frac{e^{i a x^2} - e^{-i a x^2}}{2i}.</math> |- |308 |<math> e^{-\pi i\alpha x^2}\,</math> |<math> \frac{1}{\sqrt{\alpha}}\, e^{-i\frac{\pi}{4}} e^{i\frac{\pi \xi^2}{\alpha}}</math> |<math> \frac{1}{\sqrt{2\pi \alpha}}\, e^{-i\frac{\pi}{4}} e^{i\frac{\omega^2}{4\pi \alpha}}</math> |<math> \frac{1}{\sqrt{\alpha}}\, e^{-i\frac{\pi}{4}} e^{i\frac{\omega^2}{4\pi \alpha}}</math> |Here it is assumed <math>\alpha</math> is real. For the case that alpha is complex see table entry 206 above. |- | 309 |<math> x^n\,</math> |<math> \left(\frac{i}{2\pi}\right)^n \delta^{(n)} (\xi)</math> |<math> i^n \sqrt{2\pi} \delta^{(n)} (\omega)</math> |<math> 2\pi i^n\delta^{(n)} (\omega)</math> |Here, {{mvar|n}} is a [[natural number]] and {{math|''δ''{{isup|(''n'')}}(''ξ'')}} is the {{mvar|n}}th distribution derivative of the Dirac delta function. This rule follows from rules 107 and 301. Combining this rule with 101, we can transform all [[polynomial]]s. |- | 310 |<math> \delta^{(n)}(x)</math> |<math> (i 2\pi \xi)^n</math> |<math> \frac{(i\omega)^n}{\sqrt{2\pi}} </math> |<math> (i\omega)^n</math> |Dual of rule 309. {{math|''δ''{{isup|(''n'')}}(''ξ'')}} is the {{mvar|n}}th distribution derivative of the Dirac delta function. This rule follows from 106 and 302. |- | 311 |<math> \frac{1}{x}</math> |<math> -i\pi\sgn(\xi)</math> |<math> -i\sqrt{\frac{\pi}{2}}\sgn(\omega)</math> |<math> -i\pi\sgn(\omega)</math> |Here {{math|sgn(''ξ'')}} is the [[sign function]]. Note that {{math|{{sfrac|1|''x''}}}} is not a distribution. It is necessary to use the [[Cauchy principal value]] when testing against [[Schwartz functions]]. This rule is useful in studying the [[Hilbert transform]]. |- | 312 |<math>\begin{align} &\frac{1}{x^n} \\ &:= \frac{(-1)^{n-1}}{(n-1)!}\frac{d^n}{dx^n}\log |x| \end{align}</math> |<math> -i\pi \frac{(-i 2\pi \xi)^{n-1}}{(n-1)!} \sgn(\xi)</math> |<math> -i\sqrt{\frac{\pi}{2}}\, \frac{(-i\omega)^{n-1}}{(n-1)!}\sgn(\omega)</math> |<math> -i\pi \frac{(-i\omega)^{n-1}}{(n-1)!}\sgn(\omega)</math> |{{math|{{sfrac|1|''x''<sup>''n''</sup>}}}} is the [[homogeneous distribution]] defined by the distributional derivative{{br}}<math>\frac{(-1)^{n-1}}{(n-1)!}\frac{d^n}{dx^n}\log|x|</math> |- | 313 |<math> |x|^\alpha</math> |<math> -\frac{2\sin\left(\frac{\pi\alpha}{2}\right)\Gamma(\alpha+1)}{|2\pi\xi|^{\alpha+1}}</math> |<math> \frac{-2}{\sqrt{2\pi}}\, \frac{\sin\left(\frac{\pi\alpha}{2}\right)\Gamma(\alpha+1)}{|\omega|^{\alpha+1}} </math> |<math> -\frac{2\sin\left(\frac{\pi\alpha}{2}\right)\Gamma(\alpha+1)}{|\omega|^{\alpha+1}} </math> |This formula is valid for {{math|0 > ''α'' > −1}}. For {{math|''α'' > 0}} some singular terms arise at the origin that can be found by differentiating 320. If {{math|Re ''α'' > −1}}, then {{math|{{abs|''x''}}<sup>''α''</sup>}} is a locally integrable function, and so a tempered distribution. The function {{math|''α'' ↦ {{abs|''x''}}<sup>''α''</sup>}} is a holomorphic function from the right half-plane to the space of tempered distributions. It admits a unique meromorphic extension to a tempered distribution, also denoted {{math|{{abs|''x''}}<sup>''α''</sup>}} for {{math|''α'' ≠ −1, −3, ...}} (See [[homogeneous distribution]].) |- | <!-- Should we call it 313a ? Doesn't necessarily need a number, because it is a special case. --> |<math> \frac{1}{\sqrt{|x|}} </math> |<math> \frac{1}{\sqrt{|\xi|}} </math> |<math> \frac{1}{\sqrt{|\omega|}}</math> |<math> \frac{\sqrt{2\pi}}{\sqrt{|\omega|}} </math> | Special case of 313. |- | 314 |<math> \sgn(x)</math> |<math> \frac{1}{i\pi \xi}</math> |<math> \sqrt{\frac{2}{\pi}} \frac{1}{i\omega } </math> |<math> \frac{2}{i\omega }</math> |The dual of rule 311. This time the Fourier transforms need to be considered as a [[Cauchy principal value]]. |- | 315 |<math> u(x)</math> |<math> \frac{1}{2}\left(\frac{1}{i \pi \xi} + \delta(\xi)\right)</math> |<math> \sqrt{\frac{\pi}{2}} \left( \frac{1}{i \pi \omega} + \delta(\omega)\right)</math> |<math> \pi\left( \frac{1}{i \pi \omega} + \delta(\omega)\right)</math> |The function {{math|''u''(''x'')}} is the Heaviside [[Heaviside step function|unit step function]]; this follows from rules 101, 301, and 314. |- | 316 |<math> \sum_{n=-\infty}^{\infty} \delta (x - n T)</math> |<math> \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left( \xi -\frac{k }{T}\right)</math> |<math> \frac{\sqrt{2\pi }}{T}\sum_{k=-\infty}^{\infty} \delta \left( \omega -\frac{2\pi k}{T}\right)</math> |<math> \frac{2\pi}{T}\sum_{k=-\infty}^{\infty} \delta \left( \omega -\frac{2\pi k}{T}\right)</math> |This function is known as the [[Dirac comb]] function. This result can be derived from 302 and 102, together with the fact that{{br}}<math>\begin{align} & \sum_{n=-\infty}^{\infty} e^{inx} \\ = {}& 2\pi\sum_{k=-\infty}^{\infty} \delta(x+2\pi k) \end{align}</math>{{br}}as distributions. |- | 317 |<math> J_0 (x)</math> |<math> \frac{2\, \operatorname{rect}(\pi\xi)}{\sqrt{1 - 4 \pi^2 \xi^2}} </math> |<math> \sqrt{\frac{2}{\pi}} \, \frac{\operatorname{rect}\left( \frac{\omega}{2} \right)}{\sqrt{1 - \omega^2}} </math> |<math> \frac{2\,\operatorname{rect}\left(\frac{\omega}{2} \right)}{\sqrt{1 - \omega^2}}</math> | The function {{math|''J''<sub>0</sub>(''x'')}} is the zeroth order [[Bessel function]] of first kind. |- | 318 |<math> J_n (x)</math> |<math> \frac{2 (-i)^n T_n (2 \pi \xi) \operatorname{rect}(\pi \xi)}{\sqrt{1 - 4 \pi^2 \xi^2}} </math> |<math> \sqrt{\frac{2}{\pi}} \frac{ (-i)^n T_n (\omega) \operatorname{rect} \left( \frac{\omega}{2} \right)}{\sqrt{1 - \omega^2}} </math> |<math> \frac{2(-i)^n T_n (\omega) \operatorname{rect} \left( \frac{\omega}{2} \right)}{\sqrt{1 - \omega^2}} </math> | This is a generalization of 317. The function {{math|''J<sub>n</sub>''(''x'')}} is the {{mvar|n}}th order [[Bessel function]] of first kind. The function {{math|''T<sub>n</sub>''(''x'')}} is the [[Chebyshev polynomials|Chebyshev polynomial of the first kind]]. |- | 319 |<math> \log \left| x \right|</math> |<math> -\frac{1}{2} \frac{1}{\left| \xi \right|} - \gamma \delta \left( \xi \right) </math> |<math> -\frac{\sqrt\frac{\pi}{2}}{\left| \omega \right|} - \sqrt{2 \pi} \gamma \delta \left( \omega \right) </math> |<math> -\frac{\pi}{\left| \omega \right|} - 2 \pi \gamma \delta \left( \omega \right) </math> |{{mvar|γ}} is the [[Euler–Mascheroni constant]]. It is necessary to use a finite part integral when testing {{math|{{sfrac|1|{{abs|''ξ''}}}}}} or {{math|{{sfrac|1|{{abs|''ω''}}}}}}against [[Schwartz functions]]. The details of this might change the coefficient of the delta function. |- | 320 |<math> \left( \mp ix \right)^{-\alpha}</math> |<math> \frac{\left(2\pi\right)^\alpha}{\Gamma\left(\alpha\right)}u\left(\pm \xi \right)\left(\pm \xi \right)^{\alpha-1} </math> |<math> \frac{\sqrt{2\pi}}{\Gamma\left(\alpha\right)}u\left(\pm\omega\right)\left(\pm\omega\right)^{\alpha-1} </math> |<math> \frac{2\pi}{\Gamma\left(\alpha\right)}u\left(\pm\omega\right)\left(\pm\omega\right)^{\alpha-1} </math> |This formula is valid for {{math|1 > ''α'' > 0}}. Use differentiation to derive formula for higher exponents. {{mvar|u}} is the Heaviside function. |} === Two-dimensional functions === {| class="wikitable" ! !! Function !! Fourier transform {{br}} unitary, ordinary frequency !! Fourier transform {{br}} unitary, angular frequency !! Fourier transform {{br}} non-unitary, angular frequency !! Remarks |- |400 |<math> f(x,y)</math> |<math>\begin{align}& \hat{f}(\xi_x, \xi_y)\triangleq \\ & \iint f(x,y) e^{-i 2\pi(\xi_x x+\xi_y y)}\,dx\,dy \end{align}</math> |<math>\begin{align}& \hat{f}(\omega_x,\omega_y)\triangleq \\ & \frac{1}{2 \pi} \iint f(x,y) e^{-i (\omega_x x +\omega_y y)}\, dx\,dy \end{align}</math> |<math>\begin{align}& \hat{f}(\omega_x,\omega_y)\triangleq \\ & \iint f(x,y) e^{-i(\omega_x x+\omega_y y)}\, dx\,dy \end{align}</math> |The variables {{mvar|ξ<sub>x</sub>}}, {{mvar|ξ<sub>y</sub>}}, {{mvar|ω<sub>x</sub>}}, {{mvar|ω<sub>y</sub>}} are real numbers. The integrals are taken over the entire plane. |- |401 |<math> e^{-\pi\left(a^2x^2+b^2y^2\right)}</math> |<math> \frac{1}{|ab|} e^{-\pi\left(\frac{\xi_x^2}{a^2} + \frac{\xi_y^2}{b^2}\right)}</math> |<math> \frac{1}{2\pi\,|ab|} e^{-\frac{1}{4\pi}\left(\frac{\omega_x^2}{a^2} + \frac{\omega_y^2}{b^2}\right)}</math> |<math> \frac{1}{|ab|} e^{-\frac{1}{4\pi}\left(\frac{\omega_x^2}{a^2} + \frac{\omega_y^2}{b^2}\right)}</math> |Both functions are Gaussians, which may not have unit volume. |- |402 |<math> \operatorname{circ}\left(\sqrt{x^2+y^2}\right)</math> |<math> \frac{J_1\left(2 \pi \sqrt{\xi_x^2+\xi_y^2}\right)}{\sqrt{\xi_x^2+\xi_y^2}}</math> |<math> \frac{J_1\left(\sqrt{\omega_x^2+\omega_y^2}\right)}{\sqrt{\omega_x^2+\omega_y^2}}</math> |<math> \frac{2\pi J_1\left(\sqrt{\omega_x^2+\omega_y^2}\right)}{\sqrt{\omega_x^2+\omega_y^2}}</math> |The function is defined by {{math|1=circ(''r'') = 1}} for {{math|0 ≤ ''r'' ≤ 1}}, and is 0 otherwise. The result is the amplitude distribution of the [[Airy disk]], and is expressed using {{math|''J''<sub>1</sub>}} (the order-1 [[Bessel function]] of the first kind).<ref>{{harvnb|Stein|Weiss|1971|loc=Thm. IV.3.3}}</ref> |- |403 |<math> \frac{1}{\sqrt{x^2+y^2}}</math> |<math> \frac{1}{\sqrt{\xi_x^2+\xi_y^2}}</math> |<math> \frac{1}{\sqrt{\omega_x^2+\omega_y^2}}</math> |<math> \frac{2\pi}{\sqrt{\omega_x^2+\omega_y^2}}</math> |This is the [[Hankel transform]] of {{math|1=''r''<sup>−1</sup>}}, a 2-D Fourier "self-transform".<ref>{{harvnb|Easton|2010}}</ref> |- |404 |<math> \frac{i}{x+i y}</math> |<math> \frac{1}{\xi_x+i\xi_y}</math> |<math> \frac{1}{\omega_x+i\omega_y}</math> |<math> \frac{2\pi}{\omega_x+i\omega_y}</math> |<!--This formula was used in constructing the ground state wavefunction of two-dimensional <math> p_x+ip_y</math> superconductors<ref>Phys. Rev. B 97 (10), 104501 (2018)</ref>--> |} ===Formulas for general {{math|''n''}}-dimensional functions=== {| class="wikitable" ! !! Function !! Fourier transform {{br}} unitary, ordinary frequency !! Fourier transform {{br}} unitary, angular frequency !! Fourier transform {{br}} non-unitary, angular frequency !! Remarks |- |500 |<math> f(\mathbf x)\,</math> |<math>\begin{align} &\hat{f_1}(\boldsymbol \xi) \triangleq \\ &\int_{\mathbb{R}^n}f(\mathbf x) e^{-i 2\pi \boldsymbol \xi \cdot \mathbf x }\, d \mathbf x \end{align}</math> |<math>\begin{align} &\hat{f_2}(\boldsymbol \omega) \triangleq \\ &\frac{1}{{(2 \pi)}^\frac{n}{2}} \int_{\mathbb{R}^n} f(\mathbf x) e^{-i \boldsymbol \omega \cdot \mathbf x}\, d \mathbf x \end{align}</math> |<math>\begin{align} &\hat{f_3}(\boldsymbol \omega) \triangleq \\ &\int_{\mathbb{R}^n}f(\mathbf x) e^{-i \boldsymbol \omega \cdot \mathbf x}\, d \mathbf x \end{align}</math> | |- |501 |<math> \chi_{[0,1]}(|\mathbf x|)\left(1-|\mathbf x|^2\right)^\delta</math> |<math> \frac{\Gamma(\delta+1)}{\pi^\delta\,|\boldsymbol \xi|^{\frac{n}{2} + \delta}} J_{\frac{n}{2}+\delta}(2\pi|\boldsymbol \xi|)</math> |<math> 2^\delta \, \frac{\Gamma(\delta+1)}{\left|\boldsymbol \omega\right|^{\frac{n}{2}+\delta}} J_{\frac{n}{2}+\delta}(|\boldsymbol \omega|)</math> |<math> \frac{\Gamma(\delta+1)}{\pi^\delta} \left|\frac{\boldsymbol \omega}{2\pi}\right|^{-\frac{n}{2}-\delta} J_{\frac{n}{2}+\delta}(\!|\boldsymbol \omega|\!)</math> |The function {{math|''χ''<sub>[0, 1]</sub>}} is the [[indicator function]] of the interval {{math|[0, 1]}}. The function {{math|Γ(''x'')}} is the gamma function. The function {{math|''J''<sub>{{sfrac|''n''|2}} + ''δ''</sub>}} is a Bessel function of the first kind, with order {{math|{{sfrac|''n''|2}} + ''δ''}}. Taking {{math|1=''n'' = 2}} and {{math|1=''δ'' = 0}} produces 402.<ref>{{harvnb|Stein|Weiss|1971|loc=Thm. 4.15}}</ref> |- |502 |<math> |\mathbf x|^{-\alpha}, \quad 0 < \operatorname{Re} \alpha < n.</math> |<math> \frac{(2\pi)^{\alpha}}{c_{n, \alpha}} |\boldsymbol \xi|^{-(n - \alpha)}</math> |<math> \frac{(2\pi)^{\frac{n}{2}}}{c_{n, \alpha}} |\boldsymbol \omega|^{-(n - \alpha)}</math> |<math> \frac{(2\pi)^{n}}{c_{n, \alpha}} |\boldsymbol \omega|^{-(n - \alpha)}</math> |See [[Riesz potential]] where the constant is given by{{br}}<math>c_{n, \alpha} = \pi^\frac{n}{2} 2^\alpha \frac{\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{n - \alpha}{2}\right)}.</math>{{br}}The formula also holds for all {{math|''α'' ≠ ''n'', ''n'' + 2, ...}} by analytic continuation, but then the function and its Fourier transforms need to be understood as suitably regularized tempered distributions. See [[homogeneous distribution]].<ref group=note>In {{harvnb|Gelfand|Shilov|1964|p=363}}, with the non-unitary conventions of this table, the transform of <math>|\mathbf x|^\lambda</math> is given to be{{br}} <math>2^{\lambda+n}\pi^{\tfrac12 n}\frac{\Gamma\left(\frac{\lambda+n}{2}\right)}{\Gamma\left(-\frac{\lambda}{2}\right)}|\boldsymbol\omega|^{-\lambda-n}</math>{{br}}from which this follows, with <math>\lambda=-\alpha</math>.</ref> |- |503 |<math> \frac{1}{\left|\boldsymbol \sigma\right|\left(2\pi\right)^\frac{n}{2}} e^{-\frac{1}{2} \mathbf x^{\mathrm T} \boldsymbol \sigma^{-\mathrm T} \boldsymbol \sigma^{-1} \mathbf x}</math> |<math> e^{-2\pi^2 \boldsymbol \xi^{\mathrm T} \boldsymbol \sigma \boldsymbol \sigma^{\mathrm T} \boldsymbol \xi} </math> |<math> (2\pi)^{-\frac{n}{2}} e^{-\frac{1}{2} \boldsymbol \omega^{\mathrm T} \boldsymbol \sigma \boldsymbol \sigma^{\mathrm T} \boldsymbol \omega} </math> |<math> e^{-\frac{1}{2} \boldsymbol \omega^{\mathrm T} \boldsymbol \sigma \boldsymbol \sigma^{\mathrm T} \boldsymbol \omega} </math> |This is the formula for a [[multivariate normal distribution]] normalized to 1 with a mean of 0. Bold variables are vectors or matrices. Following the notation of the aforementioned page, {{math|'''Σ''' {{=}} '''σ''' '''σ'''<sup>T</sup>}} and {{math|'''Σ'''<sup>−1</sup> {{=}} '''σ'''<sup>−T</sup> '''σ'''<sup>−1</sup>}} |- |504 |<math> e^{-2\pi\alpha|\mathbf x|}</math> | <math>\frac{c_n\alpha}{\left(\alpha^2+|\boldsymbol{\xi}|^2\right)^\frac{n+1}{2}}</math> |<math>\frac{c_n (2\pi)^{\frac{n+2}{2}} \alpha}{\left(4\pi^2\alpha^2+|\boldsymbol{\omega}|^2\right)^\frac{n+1}{2}}</math> |<math>\frac{c_n (2\pi)^{n+1} \alpha}{\left(4\pi^2\alpha^2+|\boldsymbol{\omega}|^2\right)^\frac{n+1}{2}}</math> |Here<ref>{{harvnb|Stein|Weiss|1971|p=6}}</ref>{{br}}<math>c_n=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^\frac{n+1}{2}},</math> {{math|Re(''α'') > 0}} |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)