Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
1985 in science
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Mathematics== * March β [[Louis de Branges de Bourcia]] publishes proof of [[de Branges's theorem]].<ref>{{cite journal|last=de Branges|first=Louis|title=A proof of the Bieberbach conjecture|doi=10.1007/BF02392821|mr=772434|year=1985|journal=[[Acta Mathematica]]|volume=154|issue=1|pages=137β152|doi-access=free}}</ref> * September β [[Dennis Sullivan]] publishes proof of the [[No wandering domain theorem]].<ref>{{cite journal|first=Dennis|last=Sullivan|s2cid=54186648|title=Quasiconformal homeomorphisms and dynamics I. Solution of the Fatou-Julia problem on wandering domains|journal=[[Annals of Mathematics]]|jstor=1971308|volume=122|year=1985|issue=2|pages=401β418|doi=10.2307/1971308 }}</ref> * December β Publication of the ''[[ATLAS of Finite Groups]]''. * [[Jean-Pierre Serre]] provides partial proof that a [[Frey curve]] cannot be [[Modular curve|modular]], showing that a proof of the semistable case of the [[Modularity theorem|Taniyama-Shimura conjecture]] would imply [[Fermat's Last Theorem]]. * [[Leonard Adleman]], [[Roger Heath-Brown]] and Γtienne Fouvry prove that the first case of Fermat's Last Theorem holds for infinitely many odd primes ''p''.<ref>{{cite journal|author1=Adleman L. M. |author2=Heath-Brown, D. R. |date=June 1985|title=The first case of Fermat's last theorem|journal= [[Inventiones Mathematicae]]|volume=79|issue=2|pages=409β416|publisher=Springer|location=Berlin|doi=10.1007/BF01388981|bibcode = 1985InMat..79..409A |s2cid=122537472 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)