Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Absolute convergence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Proof that any absolutely convergent series of complex numbers is convergent=== Suppose that <math display=inline>\sum \left|a_k\right|, a_k \in \Complex</math> is convergent. Then equivalently, <math display=inline>\sum \left[ \operatorname{Re}\left(a_k\right)^2 + \operatorname{Im}\left(a_k\right)^2 \right]^{1/2}</math> is convergent, which implies that <math display=inline>\sum \left|\operatorname{Re}\left(a_k\right)\right|</math> and <math display=inline>\sum\left|\operatorname{Im}\left(a_k\right)\right|</math> converge by termwise comparison of non-negative terms. It suffices to show that the convergence of these series implies the convergence of <math display=inline>\sum \operatorname{Re}\left(a_k\right)</math> and <math display=inline>\sum \operatorname{Im}\left(a_k\right),</math> for then, the convergence of <math display=inline>\sum a_k=\sum \operatorname{Re}\left(a_k\right) + i \sum \operatorname{Im}\left(a_k\right)</math> would follow, by the definition of the convergence of complex-valued series. The preceding discussion shows that we need only prove that convergence of <math display=inline>\sum \left|a_k\right|, a_k\in\R</math> implies the convergence of <math display=inline>\sum a_k.</math> Let <math display=inline>\sum \left|a_k\right|, a_k\in\R</math> be convergent. Since <math>0 \leq a_k + \left|a_k\right| \leq 2\left|a_k\right|,</math> we have <math display=block>0 \leq \sum_{k = 1}^n (a_k + \left|a_k\right|) \leq \sum_{k = 1}^n 2\left|a_k\right|.</math> Since <math display=inline>\sum 2\left|a_k\right|</math> is convergent, <math display=inline>s_n=\sum_{k = 1}^n \left(a_k + \left|a_k\right|\right)</math> is a [[Sequence#Bounded|bounded]] [[Sequence#Increasing and decreasing|monotonic]] [[sequence]] of partial sums, and <math display=inline>\sum \left(a_k + \left|a_k\right|\right)</math> must also converge. Noting that <math display=inline>\sum a_k = \sum \left(a_k + \left|a_k\right|\right) - \sum \left|a_k\right|</math> is the difference of convergent series, we conclude that it too is a convergent series, as desired. ==== Alternative proof using the Cauchy criterion and triangle inequality ==== By applying the Cauchy criterion for the convergence of a complex series, we can also prove this fact as a simple implication of the [[triangle inequality]].<ref>{{Cite book|url=https://archive.org/details/1979RudinW|title=Principles of Mathematical Analysis|last=Rudin|first=Walter|publisher=McGraw-Hill|year=1976|isbn=0-07-054235-X|location=New York|pages=71β72}}</ref> By the [[Cauchy's convergence test|Cauchy criterion]], <math display=inline>\sum |a_i|</math> converges if and only if for any <math>\varepsilon > 0,</math> there exists <math>N</math> such that <math display=inline>\left|\sum_{i=m}^n \left|a_i\right| \right| = \sum_{i=m}^n |a_i| < \varepsilon</math> for any <math>n > m \geq N.</math> But the triangle inequality implies that <math display=inline>\big|\sum_{i=m}^n a_i\big| \leq \sum_{i=m}^n |a_i|,</math> so that <math display=inline>\left|\sum_{i=m}^n a_i\right| < \varepsilon</math> for any <math>n > m \geq N,</math> which is exactly the Cauchy criterion for <math display=inline>\sum a_i.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)