Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Airy function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Relation to other special functions== For positive arguments, the Airy functions are related to the [[Bessel function#Modified Bessel functions|modified Bessel functions]]: <math display="block">\begin{align} \operatorname{Ai}(x) &{}= \frac1\pi \sqrt{\frac{x}{3}} \, K_{1/3}\!\left(\frac{2}{3} x^{3/2}\right), \\ \operatorname{Bi}(x) &{}= \sqrt{\frac{x}{3}} \left[I_{1/3}\!\left(\frac{2}{3} x^{3/2}\right) + I_{-1/3}\!\left(\frac{2}{3} x^{3/2}\right)\right]. \end{align}</math> Here, {{math|''I''<sub>Β±1/3</sub>}} and {{math|''K''<sub>1/3</sub>}} are solutions of <math display="block">x^2y'' + xy' - \left (x^2 + \tfrac{1}{9} \right )y = 0.</math> The first derivative of the Airy function is <math display="block"> \operatorname{Ai'}(x) = - \frac{x} {\pi \sqrt{3}} \, K_{2/3}\!\left(\frac{2}{3} x^{3/2}\right) .</math> Functions {{math|''K''<sub>1/3</sub>}} and {{math|''K''<sub>2/3</sub>}} can be represented in terms of rapidly convergent integrals<ref>M.Kh.Khokonov. Cascade Processes of Energy Loss by Emission of Hard Photons // JETP, V.99, No.4, pp. 690-707 \ (2004).</ref> (see also [[Bessel function#Modified Bessel functions|modified Bessel functions]]) For negative arguments, the Airy function are related to the [[Bessel function]]s: <math display="block">\begin{align} \operatorname{Ai}(-x) &{}= \sqrt{\frac{x}{9}} \left[J_{1/3}\!\left(\frac{2}{3} x^{3/2}\right) + J_{-1/3}\!\left(\frac{2}{3} x^{3/2}\right)\right], \\ \operatorname{Bi}(-x) &{}= \sqrt{\frac{x}{3}} \left[J_{-1/3}\!\left(\frac{2}{3 }x^{3/2}\right) - J_{1/3}\!\left(\frac23 x^{3/2}\right)\right]. \end{align}</math> Here, {{math|''J''<sub>Β±1/3</sub>}} are solutions of <math display="block">x^2y'' + xy' + \left (x^2 - \frac{1}{9} \right )y = 0.</math> The [[Scorer's function]]s {{math|Hi(''x'')}} and {{math|-Gi(''x'')}} solve the equation {{math|1=''y''β²β² β ''xy'' = 1/Ο}}. They can also be expressed in terms of the Airy functions: <math display="block">\begin{align} \operatorname{Gi}(x) &{}= \operatorname{Bi}(x) \int_x^\infty \operatorname{Ai}(t) \, dt + \operatorname{Ai}(x) \int_0^x \operatorname{Bi}(t) \, dt, \\ \operatorname{Hi}(x) &{}= \operatorname{Bi}(x) \int_{-\infty}^x \operatorname{Ai}(t) \, dt - \operatorname{Ai}(x) \int_{-\infty}^x \operatorname{Bi}(t) \, dt. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)