Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Analytic function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Real versus complex analytic functions== Real and complex analytic functions have important differences (one could notice that even from their different relationship with differentiability). Analyticity of complex functions is a more restrictive property, as it has more restrictive necessary conditions and complex analytic functions have more structure than their real-line counterparts.{{sfn |Krantz |Parks |2002}} According to [[Liouville's theorem (complex analysis)|Liouville's theorem]], any bounded complex analytic function defined on the whole complex plane is constant. The corresponding statement for real analytic functions, with the complex plane replaced by the real line, is clearly false; this is illustrated by <math display="block">f(x)=\frac{1}{x^2+1}.</math> Also, if a complex analytic function is defined in an open [[Ball (mathematics)|ball]] around a point ''x''<sub>0</sub>, its power series expansion at ''x''<sub>0</sub> is convergent in the whole open ball ([[analyticity of holomorphic functions|holomorphic functions are analytic]]). This statement for real analytic functions (with open ball meaning an open [[interval (mathematics)|interval]] of the real line rather than an open [[disk (mathematics)|disk]] of the complex plane) is not true in general; the function of the example above gives an example for ''x''<sub>0</sub> = 0 and a ball of radius exceeding 1, since the power series {{nowrap|1 β ''x''<sup>2</sup> + ''x''<sup>4</sup> β ''x''<sup>6</sup>...}} diverges for |''x''| β₯ 1. Any real analytic function on some [[open set]] on the real line can be extended to a complex analytic function on some open set of the complex plane. However, not every real analytic function defined on the whole real line can be extended to a complex function defined on the whole complex plane. The function ''f''(''x'') defined in the paragraph above is a counterexample, as it is not defined for ''x'' = Β±i. This explains why the Taylor series of ''f''(''x'') diverges for |''x''| > 1, i.e., the [[radius of convergence]] is 1 because the complexified function has a [[Complex pole|pole]] at distance 1 from the evaluation point 0 and no further poles within the open disc of radius 1 around the evaluation point.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)