Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Association rule learning
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Lift === The ''[[lift (data mining)|lift]]'' of a rule is defined as: <math> \mathrm{lift}(X\Rightarrow Y) = \frac{ \mathrm{supp}(X \cup Y)}{ \mathrm{supp}(X) \times \mathrm{supp}(Y) } </math> or the ratio of the observed support to that expected if X and Y were [[Independence (probability theory)|independent]]. For example, the rule <math>\{\mathrm{milk, bread}\} \Rightarrow \{\mathrm{butter}\}</math> has a lift of <math>\frac{0.2}{0.4 \times 0.4} = 1.25 </math>. If the rule had a lift of 1, it would imply that the probability of occurrence of the antecedent and that of the consequent are independent of each other. When two events are independent of each other, no rule can be drawn involving those two events. If the lift is > 1, that lets us know the degree to which those two occurrences are dependent on one another, and makes those rules potentially useful for predicting the consequent in future data sets. If the lift is < 1, that lets us know the items are substitute to each other. This means that presence of one item has negative effect on presence of other item and vice versa. The value of lift is that it considers both the support of the rule and the overall data set.<ref name=":0" /> [rede]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)