Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
BCH code
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties == The generator polynomial of a BCH code has degree at most <math>(d-1)m</math>. Moreover, if <math>q=2</math> and <math>c=1</math>, the generator polynomial has degree at most <math>dm/2</math>. {{Collapse top|title=Proof}} Each minimal polynomial <math>m_i(x)</math> has degree at most <math>m</math>. Therefore, the least common multiple of <math>d-1</math> of them has degree at most <math>(d-1)m</math>. Moreover, if <math>q=2,</math> then <math>m_i(x) = m_{2i}(x)</math> for all <math>i</math>. Therefore, <math>g(x)</math> is the least common multiple of at most <math>d/2</math> minimal polynomials <math>m_i(x)</math> for odd indices <math>i,</math> each of degree at most <math>m</math>. {{Collapse bottom}} A BCH code has minimal Hamming distance at least <math>d</math>. {{Collapse top|title=Proof}} Suppose that <math>p(x)</math> is a code word with fewer than <math>d</math> non-zero terms. Then : <math>p(x) = b_1x^{k_1} + \cdots + b_{d-1}x^{k_{d-1}},\text{ where }k_1<k_2<\cdots<k_{d-1}.</math> Recall that <math>\alpha^c,\ldots,\alpha^{c+d-2}</math> are roots of <math>g(x),</math> hence of <math>p(x)</math>. This implies that <math>b_1,\ldots,b_{d-1}</math> satisfy the following equations, for each <math>i \in \{c, \dotsc, c+d-2\}</math>: : <math>p(\alpha^i) = b_1\alpha^{ik_1} + b_2\alpha^{ik_2} + \cdots + b_{d-1}\alpha^{ik_{d-1}} = 0.</math> In matrix form, we have : <math>\begin{bmatrix} \alpha^{ck_1} & \alpha^{ck_2} & \cdots & \alpha^{ck_{d-1}} \\ \alpha^{(c+1)k_1} & \alpha^{(c+1)k_2} & \cdots & \alpha^{(c+1)k_{d-1}} \\ \vdots & \vdots & & \vdots \\ \alpha^{(c+d-2)k_1} & \alpha^{(c+d-2)k_2} & \cdots & \alpha^{(c+d-2)k_{d-1}} \\ \end{bmatrix}\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{d-1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}. </math> The determinant of this matrix equals :<math>\left(\prod_{i=1}^{d-1}\alpha^{ck_i}\right)\det\begin{pmatrix} 1 & 1 & \cdots & 1 \\ \alpha^{k_1} & \alpha^{k_2} & \cdots & \alpha^{k_{d-1}} \\ \vdots & \vdots & & \vdots \\ \alpha^{(d-2)k_1} & \alpha^{(d-2)k_2} & \cdots & \alpha^{(d-2)k_{d-1}} \\ \end{pmatrix} = \left(\prod_{i=1}^{d-1}\alpha^{ck_i}\right) \det(V).</math> The matrix <math>V</math> is seen to be a [[Vandermonde matrix]], and its determinant is :<math>\det(V) = \prod_{1\le i<j\le d-1} \left(\alpha^{k_j} - \alpha^{k_i}\right),</math> which is non-zero. It therefore follows that <math>b_1,\ldots,b_{d-1}=0,</math> hence <math>p(x) = 0.</math> {{Collapse bottom}} A BCH code is cyclic. {{Collapse top|title=Proof}} A polynomial code of length <math>n</math> is cyclic if and only if its generator polynomial divides <math>x^n-1.</math> Since <math>g(x)</math> is the minimal polynomial with roots <math>\alpha^c,\ldots,\alpha^{c+d-2},</math> it suffices to check that each of <math>\alpha^c,\ldots,\alpha^{c+d-2}</math> is a root of <math>x^n-1.</math> This follows immediately from the fact that <math>\alpha</math> is, by definition, an <math>n</math>th root of unity. {{Collapse bottom}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)