Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bernoulli distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Entropy and Fisher's Information== ===Entropy=== Entropy is a measure of uncertainty or randomness in a probability distribution. For a Bernoulli random variable <math>X</math> with success probability <math>p</math> and failure probability <math>q = 1 - p</math>, the entropy <math>H(X)</math> is defined as: :<math>\begin{align} H(X) &= \mathbb{E}_p \ln (\frac{1}{P(X)}) = - [P(X = 0) \ln P(X = 0) + P(X = 1) \ln P(X = 1)] \\ H(X) &= - (q \ln q + p \ln p) , \quad q = P(X = 0), p = P(X = 1) \end{align}</math> The entropy is maximized when <math>p = 0.5</math>, indicating the highest level of uncertainty when both outcomes are equally likely. The entropy is zero when <math>p = 0</math> or <math>p = 1</math>, where one outcome is certain. ===Fisher's Information=== Fisher information measures the amount of information that an observable random variable <math>X</math> carries about an unknown parameter <math>p</math> upon which the probability of <math>X</math> depends. For the Bernoulli distribution, the Fisher information with respect to the parameter <math>p</math> is given by: :<math>\begin{align} I(p) = \frac{1}{pq} \end{align}</math> '''Proof:''' *The '''Likelihood Function''' for a Bernoulli random variable<math>X</math> is: :<math>\begin{align} L(p; X) = p^X (1 - p)^{1 - X} \end{align}</math> This represents the probability of observing <math>X</math> given the parameter <math>p</math>. *The '''Log-Likelihood Function''' is: :<math>\begin{align} \ln L(p; X) = X \ln p + (1 - X) \ln (1 - p) \end{align}</math> *The Score Function (the first derivative of the log-likelihood w.r.t. <math>p</math> is: :<math>\begin{align} \frac{\partial}{\partial p} \ln L(p; X) = \frac{X}{p} - \frac{1 - X}{1 - p} \end{align}</math> *The second derivative of the log-likelihood function is: :<math>\begin{align} \frac{\partial^2}{\partial p^2} \ln L(p; X) = -\frac{X}{p^2} - \frac{1 - X}{(1 - p)^2} \end{align}</math> *'''Fisher information''' is calculated as the negative expected value of the second derivative of the log-likelihood: :<math>\begin{align} I(p) = -E\left[\frac{\partial^2}{\partial p^2} \ln L(p; X)\right] = -\left(-\frac{p}{p^2} - \frac{1 - p}{(1 - p)^2}\right) = \frac{1}{p(1-p)} = \frac{1}{pq} \end{align}</math> It is maximized when <math>p = 0.5</math>, reflecting maximum uncertainty and thus maximum information about the parameter <math>p</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)