Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bogoliubov transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Unified matrix description == Because Bogoliubov transformations are linear recombination of operators, it is more convenient and insightful to write them in terms of matrix transformations. If a pair of annihilators <math>(a , b)</math> transform as :<math> \begin{pmatrix} \alpha\\ \beta \end{pmatrix} = U \begin{pmatrix} a\\ b \end{pmatrix} </math> where <math>U</math> is a <math>2\times2</math> matrix. Then naturally :<math> \begin{pmatrix} \alpha^\dagger\\ \beta^\dagger \end{pmatrix} = U^* \begin{pmatrix} a^\dagger\\ b^\dagger \end{pmatrix} </math> For fermion operators, the requirement of [[commutation relations]] reflects in two requirements for the form of matrix <math>U</math> :<math> U= \begin{pmatrix} u & v\\ -v^* & u^* \end{pmatrix} </math> and :<math> |u|^2 + |v|^2 = 1 </math> For boson operators, the [[commutation relations]] require :<math> U= \begin{pmatrix} u & v\\ v^* & u^* \end{pmatrix} </math> and :<math> |u|^2 - |v|^2 = 1 </math> These conditions can be written uniformly as :<math> U \Gamma_\pm U^\dagger = \Gamma_\pm </math> where :<math> \Gamma_\pm = \begin{pmatrix} 1 & 0\\ 0 & \pm1 \end{pmatrix} </math> where <math>\Gamma_\pm</math> applies to fermions and bosons, respectively. === Diagonalizing a quadratic Hamiltonian using matrix description === Bogoliubov transformation lets us diagonalize a quadratic Hamiltonian :<math> \hat{H} = \begin{pmatrix} a^\dagger & b^\dagger \end{pmatrix} H \begin{pmatrix} a \\ b \end{pmatrix} </math> by just diagonalizing the matrix <math>\Gamma_\pm H</math>. In the notations above, it is important to distinguish the operator <math>\hat{H}</math> and the numeric matrix <math>H</math>. This fact can be seen by rewriting <math>\hat{H}</math> as :<math> \hat{H} = \begin{pmatrix} \alpha^\dagger & \beta^\dagger \end{pmatrix} \Gamma_\pm U (\Gamma_\pm H) U^{-1} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} </math> and <math>\Gamma_\pm U (\Gamma_\pm H) U^{-1}=D</math> if and only if <math>U</math> diagonalizes <math>\Gamma_\pm H</math>, i.e. <math>U (\Gamma_\pm H) U^{-1} = \Gamma_\pm D</math>. Useful properties of Bogoliubov transformations are listed below. {| class="wikitable" |- ! !! Boson !! Fermion |- | Transformation matrix || <math>U=\begin{pmatrix}u & v\\v^* & u^*\end{pmatrix}</math> || <math>U=\begin{pmatrix}u & v\\-v^* & u^*\end{pmatrix}</math> |- | Inverse transformation matrix || <math>U^{-1} = \begin{pmatrix}u^* & -v\\-v^* & u\end{pmatrix}</math> || <math>U^{-1}=\begin{pmatrix}u^* & -v\\v^* & u\end{pmatrix}</math> |- | Gamma || <math>\Gamma = \begin{pmatrix}1 & 0\\0 & -1\end{pmatrix}</math> || <math>\Gamma = \begin{pmatrix}1 & 0\\0 & 1\end{pmatrix}</math> |- | Diagonalization || <math>U(\Gamma H) U^{-1} = \Gamma D </math> || <math>U H U^{-1} = D </math> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)