Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Boolean function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Cryptographic analysis === The ''[[Walsh transform]]'' of a Boolean function is a k-ary integer-valued function giving the coefficients of a decomposition into [[Parity function|linear functions]] ([[Walsh function]]s), analogous to the decomposition of real-valued functions into [[harmonic]]s by the [[Fourier transform]]. Its square is the ''power spectrum'' or ''Walsh spectrum''. The Walsh coefficient of a single bit vector is a measure for the correlation of that bit with the output of the Boolean function. The maximum (in absolute value) Walsh coefficient is known as the ''linearity'' of the function.<ref name=":1" /> The highest number of bits (order) for which all Walsh coefficients are 0 (i.e. the subfunctions are balanced) is known as ''resiliency'', and the function is said to be [[Correlation immunity|correlation immune]] to that order.<ref name=":1" /> The Walsh coefficients play a key role in [[linear cryptanalysis]]. The ''[[autocorrelation]]'' of a Boolean function is a k-ary integer-valued function giving the correlation between a certain set of changes in the inputs and the function output. For a given bit vector it is related to the Hamming weight of the derivative in that direction. The maximal autocorrelation coefficient (in absolute value) is known as the ''absolute indicator''.<ref name=":0" /><ref name=":1" /> If all autocorrelation coefficients are 0 (i.e. the derivatives are balanced) for a certain number of bits then the function is said to satisfy the ''propagation criterion'' to that order; if they are all zero then the function is a [[bent function]].<ref>{{Cite journal|last1=Canteaut|first1=Anne|last2=Carlet|first2=Claude|last3=Charpin|first3=Pascale|last4=Fontaine|first4=Caroline|date=2000-05-14|title=Propagation characteristics and correlation-immunity of highly nonlinear boolean functions|url=https://dl.acm.org/doi/10.5555/1756169.1756219|journal=Proceedings of the 19th International Conference on Theory and Application of Cryptographic Techniques|series=EUROCRYPT'00|location=Bruges, Belgium|publisher=Springer-Verlag|pages=507–522|isbn=978-3-540-67517-4}}</ref> The autocorrelation coefficients play a key role in [[differential cryptanalysis]]. The Walsh coefficients of a Boolean function and its autocorrelation coefficients are related by the equivalent of the [[Wiener–Khinchin theorem]], which states that the autocorrelation and the power spectrum are a Walsh transform pair.<ref name=":1" /> ==== Linear approximation table ==== These concepts can be extended naturally to ''vectorial'' Boolean functions by considering their output bits (''coordinates'') individually, or more thoroughly, by looking at the set of all linear functions of output bits, known as its ''components''.<ref name=":2">{{Cite web|last=Carlet|first=Claude|title=Vectorial Boolean Functions for Cryptography|url=https://www.math.univ-paris13.fr/~carlet/chap-vectorial-fcts-corr.pdf|url-status=live|website=University of Paris|archive-url=https://web.archive.org/web/20160117102533/http://www.math.univ-paris13.fr:80/~carlet/chap-vectorial-fcts-corr.pdf |archive-date=2016-01-17 }}</ref> The set of Walsh transforms of the components is known as a '''Linear Approximation Table''' (LAT)<ref name=":3">{{Cite web|last=Heys|first=Howard M.|title=A Tutorial on Linear and Differential Cryptanalysis|url=http://www.cs.bc.edu/~straubin/crypto2017/heys.pdf|url-status=live|archive-url=https://web.archive.org/web/20170517014157/http://www.cs.bc.edu:80/~straubin/crypto2017/heys.pdf |archive-date=2017-05-17 }}</ref><ref name=":4">{{Cite web|title=S-Boxes and Their Algebraic Representations — Sage 9.2 Reference Manual: Cryptography|url=https://doc.sagemath.org/html/en/reference/cryptography/sage/crypto/sbox.html|access-date=2021-05-04|website=doc.sagemath.org}}</ref> or ''correlation matrix'';<ref>{{cite conference | last1 = Daemen | first1 = Joan | last2 = Govaerts | first2 = René | last3 = Vandewalle | first3 = Joos | editor-last = Preneel | editor-first = Bart | title = Correlation matrices | doi = 10.1007/3-540-60590-8_21 | pages = 275–285 | publisher = Springer | series = Lecture Notes in Computer Science | book-title = Fast Software Encryption: Second International Workshop. Leuven, Belgium, 14-16 December 1994, Proceedings | volume = 1008 | year = 1994| doi-access = free }}</ref><ref>{{Cite web|last=Daemen|first=Joan|date=10 June 1998|title=Chapter 5: Propagation and Correlation - Annex to AES Proposal Rijndael|url=https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/aes-development/PropCorr.pdf|url-status=live|website=NIST|archive-url=https://web.archive.org/web/20180723015757/https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/aes-development/PropCorr.pdf |archive-date=2018-07-23 }}</ref> it describes the correlation between different linear combinations of input and output bits. The set of autocorrelation coefficients of the components is the ''autocorrelation table'',<ref name=":4" /> related by a Walsh transform of the components<ref>{{Cite web|last=Nyberg|first=Kaisa|date=December 1, 2019|title=The Extended Autocorrelation and Boomerang Tables and Links Between Nonlinearity Properties of Vectorial Boolean Functions|url=https://eprint.iacr.org/2019/1381.pdf|url-status=live|archive-url=https://web.archive.org/web/20201102023321/https://eprint.iacr.org/2019/1381.pdf |archive-date=2020-11-02 }}</ref> to the more widely used ''Difference Distribution Table'' (DDT)<ref name=":3" /><ref name=":4" /> which lists the correlations between differences in input and output bits (see also: [[S-box]]).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)