Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== China ==== The method of exhaustion was later discovered independently in [[Chinese mathematics|China]] by [[Liu Hui]] in the 3rd century AD to find the area of a circle.<ref>{{cite book|series=Chinese studies in the history and philosophy of science and technology|volume=130|title=A comparison of Archimdes' and Liu Hui's studies of circles |first1=Liu|last1=Dun|first2=Dainian |last2=Fan |first3=Robert Sonné|last3=Cohen|year=1966|isbn=978-0-7923-3463-7|page=279|publisher=Springer |url=https://books.google.com/books?id=jaQH6_8Ju-MC|access-date=15 November 2015|archive-date=1 March 2023|archive-url=https://web.archive.org/web/20230301150353/https://books.google.com/books?id=jaQH6_8Ju-MC|url-status=live}},[https://books.google.com/books?id=jaQH6_8Ju-MC&pg=PA279 pp. 279ff] {{Webarchive |url=https://web.archive.org/web/20230301150353/https://books.google.com/books?id=jaQH6_8Ju-MC&pg=PA279 |date=1 March 2023 }}</ref><ref name=":0" /> In the 5th century AD, [[Zu Gengzhi]], son of [[Zu Chongzhi]], established a method<ref>{{cite book|last1=Katz |first1=Victor J.|title=A history of mathematics|date=2008|location=Boston, MA|publisher=Addison-Wesley|isbn=978-0-321-38700-4 |edition=3rd|pages=203|author-link=Victor J. Katz}}</ref><ref>{{cite book|title=Calculus: Early Transcendentals|first1=Dennis G. |last1=Zill |first2=Scott|last2=Wright|first3=Warren S.|last3=Wright |publisher=Jones & Bartlett Learning|year=2009 |edition=3rd |isbn=978-0-7637-5995-7|page=xxvii |url=https://books.google.com/books?id=R3Hk4Uhb1Z0C|access-date=15 November 2015|archive-date=1 March 2023|archive-url=https://web.archive.org/web/20230301150357/https://books.google.com/books?id=R3Hk4Uhb1Z0C|url-status=live}} [https://books.google.com/books?id=R3Hk4Uhb1Z0C&pg=PR27 Extract of page 27] {{Webarchive |url=https://web.archive.org/web/20230301150353/https://books.google.com/books?id=R3Hk4Uhb1Z0C&pg=PR27 |date=1 March 2023 }}</ref> that would later be called [[Cavalieri's principle]] to find the volume of a [[sphere]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)