Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Canonical commutation relation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Uncertainty relation and commutators == All such nontrivial commutation relations for pairs of operators lead to corresponding [[uncertainty principle|uncertainty relations]],<ref name="robertson">{{cite journal |first=H. P. |last=Robertson |title=The Uncertainty Principle |journal=[[Physical Review]] |volume=34 |issue=1 |year=1929 |pages=163–164 |doi=10.1103/PhysRev.34.163 |bibcode = 1929PhRv...34..163R }}</ref> involving positive semi-definite expectation contributions by their respective commutators and anticommutators. In general, for two [[Self-adjoint operator|Hermitian operators]] {{mvar|A}} and {{mvar|B}}, consider expectation values in a system in the state {{mvar|ψ}}, the variances around the corresponding expectation values being {{math|1=(Δ''A'')<sup>2</sup> ≡ {{langle}}(''A'' − {{langle}}''A''{{rangle}})<sup>2</sup>{{rangle}}}}, etc. Then <math display="block"> \Delta A \, \Delta B \geq \frac{1}{2} \sqrt{ \left|\left\langle\left[{A},{B}\right]\right\rangle \right|^2 + \left|\left\langle\left\{ A-\langle A\rangle ,B-\langle B\rangle \right\} \right\rangle \right|^2} ,</math> where {{math|1=[''A'', ''B''] ≡ ''A B'' − ''B A''}} is the [[Commutator#Ring theory|commutator]] of {{mvar|A}} and {{mvar|B}}, and {{math|1={''A'', ''B''} ≡ ''A B'' + ''B A''}} is the [[anticommutator]]. This follows through use of the [[Cauchy–Schwarz inequality]], since {{math|{{!}}{{langle}}''A''<sup>2</sup>{{rangle}}{{!}} {{!}}{{langle}}''B''<sup>2</sup>{{rangle}}{{!}} ≥ {{!}}{{langle}}''A B''{{rangle}}{{!}}<sup>2</sup>}}, and {{math|1=''A B'' = ([''A'', ''B''] + {''A'', ''B''})/2 }}; and similarly for the shifted operators {{math|''A'' − {{langle}}''A''{{rangle}}}} and {{math|''B'' − {{langle}}''B''{{rangle}}}}. (Cf. [[uncertainty principle derivations]].) Substituting for {{mvar|A}} and {{mvar|B}} (and taking care with the analysis) yield Heisenberg's familiar uncertainty relation for {{mvar|x}} and {{mvar|p}}, as usual.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)