Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Canonical transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Invariance of the Lagrange bracket === The [[Lagrange bracket]] which is defined as: <math display="block"> [ u, v ]_{\eta} := \sum_{i=1}^n \left(\frac{\partial q_i}{\partial u} \frac{\partial p_i}{\partial v} - \frac{\partial p_i}{\partial u} \frac{\partial q_i}{\partial v } \right) </math> can be represented in matrix form as: <math display="block"> [ u, v ]_{\eta} := \left(\frac {\partial \eta}{\partial u}\right)^T J \left(\frac {\partial \eta}{\partial v}\right) </math> Using similar derivation, gives: <math display="block">[u, v]_\varepsilon = (\partial_u \varepsilon )^T \,J\, (\partial_v \varepsilon) = (M \, \partial_u \eta )^T \,J \, ( M \,\partial_v \eta) = (\partial_u \eta )^T\, M^TJ M\, (\partial_v \eta) = (\partial_u \eta )^T\, J\,(\partial_v \eta) = [u, v]_\eta</math> The symplectic condition can also be recovered by taking <math display="inline">u=\eta_i </math> and <math display="inline">v=\eta_j </math> which shows that <math display="inline">(M^T J M )_{ij}= J_{i j} </math>. Thus these conditions are equivalent to symplectic conditions. Furthermore, it can be seen that <math display="inline">\mathcal L_{ij}(\eta) =[\eta_i,\eta_j]_\varepsilon=(M^T J M )_{ij} </math>, which is also the result of explicitly calculating the matrix element by expanding it.<ref name=":0" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)