Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cantor function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Fractal volume === The Cantor function is closely related to the [[Cantor set]]. The Cantor set ''C'' can be defined as the set of those numbers in the interval [0, 1] that do not contain the digit 1 in their [[radix|base]]-3 (triadic) expansion, except if the 1 is followed by zeros only (in which case the tail 1000<math>\ldots</math> can be replaced by 0222<math>\ldots</math> to get rid of any 1). It turns out that the Cantor set is a [[fractal]] with (uncountably) infinitely many points (zero-dimensional volume), but zero length (one-dimensional volume). Only the ''D''-dimensional volume <math> H_D </math> (in the sense of a [[Hausdorff dimension|Hausdorff-measure]]) takes a finite value, where <math> D = \log_3(2) </math> is the fractal dimension of ''C''. We may define the Cantor function alternatively as the ''D''-dimensional volume of sections of the Cantor set : <math> f(x)=H_D(C \cap (0,x)). </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)