Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Carathéodory's theorem (convex hull)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== {{Anchor|colorful}}Colorful Carathéodory theorem === Let ''X''<sub>1</sub>, ..., ''X''<sub>''d''+1</sub> be sets in '''R'''<sup>''d''</sup> and let ''x'' be a point contained in the intersection of the convex hulls of all these ''d''+1 sets. Then there is a set ''T'' = {''x''<sub>1</sub>, ..., ''x''<sub>''d''+1</sub>}, where {{math|''x''<sub>1</sub> ∈ ''X''<sub>1</sub>, ..., ''x''<sub>''d''+1</sub> ∈ ''X''<sub>''d''+1</sub>}}, such that the convex hull of ''T'' contains the point ''x''.<ref name=":0">{{Cite journal|date=1982-01-01|title=A generalization of carathéodory's theorem|journal=Discrete Mathematics|language=en|volume=40|issue=2–3|pages=141–152|doi=10.1016/0012-365X(82)90115-7|issn=0012-365X|last1=Bárány|first1=Imre|doi-access=free}}</ref> By viewing the sets ''X''<sub>1</sub>, ..., ''X''<sub>''d''+1</sub> as different colors, the set ''T'' is made by points of all colors, hence the "colorful" in the theorem's name.<ref>{{Cite journal|last1=Montejano|first1=Luis|last2=Fabila|first2=Ruy|last3=Bracho|first3=Javier|last4=Bárány|first4=Imre|last5=Arocha|first5=Jorge L.|date=2009-09-01|title=Very Colorful Theorems|journal=Discrete & Computational Geometry|language=en|volume=42|issue=2|pages=142–154|doi=10.1007/s00454-009-9180-4|issn=1432-0444|doi-access=free}}</ref> The set ''T'' is also called a ''rainbow simplex'', since it is a ''d''-dimensional [[simplex]] in which each corner has a different color.<ref name="Mustafa 1300–1305">{{Cite journal|last1=Mustafa|first1=Nabil H.|last2=Ray|first2=Saurabh|date=2016-04-06|title=An optimal generalization of the Colorful Carathéodory theorem|journal=Discrete Mathematics|language=en|volume=339|issue=4|pages=1300–1305|doi=10.1016/j.disc.2015.11.019|issn=0012-365X|doi-access=free}}</ref> This theorem has a variant in which the convex hull is replaced by the [[conical hull]].<ref name=":0" />{{Rp|Thm.2.2}} Let ''X''<sub>1</sub>, ..., ''X''<sub>''d''</sub> be sets in '''R'''<sup>d</sup> and let ''x'' be a point contained in the intersection of the ''conical hulls'' of all these ''d'' sets. Then there is a set ''T'' = {''x''<sub>1</sub>, ..., ''x''<sub>''d''</sub>}, where {{math|''x''<sub>1</sub> ∈ ''X''<sub>1</sub>, ..., ''x''<sub>''d''</sub> ∈ ''X''<sub>''d''</sub>}}, such that the ''conical hull'' of ''T'' contains the point ''x''.<ref name=":0" /> Mustafa and Ray extended this colorful theorem from points to convex bodies.<ref name="Mustafa 1300–1305"/> The computational problem of finding the colorful set lies in the intersection of the complexity classes [[PPAD (complexity)|PPAD]] and [[PLS (complexity)|PLS]].<ref>{{Citation |last1=Meunier |first1=Frédéric |title=The Rainbow at the End of the Line ? A PPAD Formulation of the Colorful Carathéodory Theorem with Applications |date=2017-01-01 |work=Proceedings of the 2017 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) |pages=1342–1351 |series=Proceedings |publisher=Society for Industrial and Applied Mathematics |doi=10.1137/1.9781611974782.87 |last2=Mulzer |first2=Wolfgang |last3=Sarrabezolles |first3=Pauline |last4=Stein |first4=Yannik|isbn=978-1-61197-478-2 |s2cid=5784949 |doi-access=free |arxiv=1608.01921 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)