Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cayley's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples of the regular group representation== <math> \mathbb Z_2 = \{0,1\} </math> with addition modulo 2; group element 0 corresponds to the identity permutation e, group element 1 to permutation (12) (see [[Permutation#Cycle_notation|cycle notation]]). E.g. 0 +1 = 1 and 1+1 = 0, so <math display=inline>1\mapsto0</math> and <math display=inline>0\mapsto1,</math> as they would under a permutation. <math> \mathbb Z_3 = \{0,1,2\} </math> with addition modulo 3; group element 0 corresponds to the identity permutation e, group element 1 to permutation (123), and group element 2 to permutation (132). E.g. 1 + 1 = 2 corresponds to (123)(123) = (132). <math> \mathbb Z_4 = \{0,1,2,3\} </math> with addition modulo 4; the elements correspond to e, (1234), (13)(24), (1432). The elements of [[Klein four-group]] {e, a, b, c} correspond to e, (12)(34), (13)(24), and (14)(23). S<sub>3</sub> ([[dihedral group of order 6]]) is the group of all permutations of 3 objects, but also a permutation group of the 6 group elements, and the latter is how it is realized by its regular representation. <!-- Looks ugly if it's left-aligned/non-square cells, so a bit of customization is good here --> {| class="wikitable" style="text-align: center;" ! style="width: 1.5em; height: 1.5em;" | * ! style="width: 1.5em;" | ''e'' ! style="width: 1.5em;" | ''a'' ! style="width: 1.5em;" | ''b'' ! style="width: 1.5em;" | ''c'' ! style="width: 1.5em;" | ''d'' ! style="width: 1.5em;" | ''f'' ! permutation |- ! style="height: 1.5em;" | ''e'' | ''e'' || ''a'' || ''b'' || ''c'' || ''d'' || ''f'' || ''e'' |- ! style="height: 1.5em;" | ''a'' | ''a'' || ''e'' || ''d'' || ''f'' || ''b'' || ''c'' || (12)(35)(46) |- ! style="height: 1.5em;" | ''b'' | ''b'' || ''f'' || ''e'' || ''d'' || ''c'' || ''a'' || (13)(26)(45) |- ! style="height: 1.5em;" | ''c'' | ''c'' || ''d'' || ''f'' || ''e'' || ''a'' || ''b'' || (14)(25)(36) |- ! style="height: 1.5em;" | ''d'' | ''d'' || ''c'' || ''a'' || ''b'' || ''f'' || ''e'' || (156)(243) |- ! style="height: 1.5em;" | ''f'' | ''f'' || ''b'' || ''c'' || ''a'' || ''e'' || ''d'' || (165)(234) |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)