Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cayley–Purser algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Security == Recovering the private key <math>\chi</math> from <math>\gamma</math> is computationally infeasible, at least as hard as finding square roots mod ''n'' (see [[quadratic residue]]). It could be recovered from <math>\alpha</math> and <math>\beta</math> if the system <math>\chi\beta = \alpha^{-1}\chi</math> could be solved, but the number of solutions to this system is large as long as elements in the group have a large order, which can be guaranteed for almost every element. However, the system can be broken by finding a multiple <math>\chi'</math> of <math>\chi</math> by solving for <math>d</math> in the following congruence: :<math>d \left(\beta - \alpha^{-1}\right) \equiv \left(\alpha^{-1}\gamma - \gamma\beta\right) \pmod n</math> Observe that a solution exists if for some <math>i, j \in \left|\gamma\right|</math> and <math>x, y \in \mathbb{Z}_n</math> :<math>x\left(\beta_{ij}^{-1} - \alpha_{ij}\right) \equiv y \pmod n.</math> If <math>d</math> is known, <math>d \mathrm{I} + \gamma = \chi'</math> — a multiple of <math>\chi</math>. Any multiple of <math>\chi</math> yields <math>\lambda = \kappa^{-1} = v^{-1}\chi^{-1} \epsilon v\chi</math>. This presents a fatal weakness for the system, which has not yet been reconciled. This flaw does not preclude the algorithm's use as a mixed private-key/public-key algorithm, if the sender transmits <math>\epsilon</math> secretly, but this approach presents no advantage over the common approach of transmitting a [[symmetric encryption]] key using a public-key encryption scheme and then switching to symmetric encryption, which is faster than Cayley-Purser.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)