Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cayley transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Examples === In the 2Γ2 case, we have :<math> \begin{bmatrix} 0 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 0 \end{bmatrix} \leftrightarrow \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} . </math> The 180Β° [[rotation matrix]], β''I'', is excluded, though it is the limit as tan <sup>ΞΈ</sup>β<sub>2</sub> goes to infinity. In the 3Γ3 case, we have :<math> \begin{bmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{bmatrix} \leftrightarrow \frac{1}{K} \begin{bmatrix} w^2+x^2-y^2-z^2 & 2 (x y-w z) & 2 (w y+x z) \\ 2 (x y+w z) & w^2-x^2+y^2-z^2 & 2 (y z-w x) \\ 2 (x z-w y) & 2 (w x+y z) & w^2-x^2-y^2+z^2 \end{bmatrix} , </math> where ''K'' = ''w''<sup>2</sup> + ''x''<sup>2</sup> + ''y''<sup>2</sup> + ''z''<sup>2</sup>, and where ''w'' = 1. This we recognize as the rotation matrix corresponding to [[quaternion]] :<math> w + \mathbf{i} x + \mathbf{j} y + \mathbf{k} z \,\!</math> (by a formula Cayley had published the year before), except scaled so that ''w'' = 1 instead of the usual scaling so that ''w''<sup>2</sup> + ''x''<sup>2</sup> + ''y''<sup>2</sup> + ''z''<sup>2</sup> = 1. Thus vector (''x'',''y'',''z'') is the unit axis of rotation scaled by tan <sup>ΞΈ</sup>β<sub>2</sub>. Again excluded are 180Β° rotations, which in this case are all ''Q'' which are [[symmetric matrix|symmetric]] (so that ''Q''<sup>T</sup> = ''Q'').
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)