Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Celestial navigation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Lunar distance==== {{unreferenced section|date=February 2022}} {{Main|lunar distance (navigation)|l1=Lunar distance}} An older but still useful and practical method of determining accurate time at sea before the advent of precise timekeeping and satellite-based time systems is called "'''lunar distances,"''' or "lunars," which was used extensively for a short period and refined for daily use on board ships in the 18th century. Use declined through the middle of the 19th century as better and better timepieces (chronometers) became available to the average vessel at sea. Although most recently only used by sextant hobbyists and historians, it is now becoming more common in celestial navigation courses to reduce total dependence on [[GNSS]] systems as potentially the only accurate time source aboard a vessel. Designed for use when an accurate timepiece is not available or timepiece accuracy is suspect during a long sea voyage, the navigator precisely measures the angle between the Moon and the Sun or between the Moon and one of several stars near the [[ecliptic]]. The observed angle must be corrected for the effects of refraction and parallax, like any celestial sight. To make this correction, the navigator measures the altitudes of the Moon and Sun (or another star) at about the same time as the lunar distance angle. Only rough values for the altitudes are required. A calculation with suitable published tables (or longhand with logarithms and graphical tables) requires about 10 to 15 minutes' work to convert the observed angle(s) to a geocentric lunar distance. The navigator then compares the corrected angle against those listed in the appropriate almanac pages for every three hours of Greenwich time, using interpolation tables to derive intermediate values. The result is a difference in time between the time source (of unknown time) used for the observations and the actual prime meridian time (that of the "Zero Meridian" at Greenwich, also known as UTC or GMT). Knowing UTC/GMT, a further set of sights can be taken and reduced by the navigator to calculate their exact position on the Earth as a local latitude and longitude.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)