Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Central limit theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Multidimensional CLT=== Proofs that use characteristic functions can be extended to cases where each individual <math display="inline">\mathbf{X}_i</math> is a [[random vector]] in {{nowrap|<math display="inline">\R^k</math>,}} with mean vector <math display="inline">\boldsymbol\mu = \operatorname E[\mathbf{X}_i]</math> and [[covariance matrix]] <math display="inline">\mathbf{\Sigma}</math> (among the components of the vector), and these random vectors are independent and identically distributed. The multidimensional central limit theorem states that when scaled, sums converge to a [[multivariate normal distribution]].<ref name="vanderVaart">{{Cite book |last=van der Vaart |first=A.W. |title=Asymptotic statistics |year=1998 |publisher=Cambridge University Press |location=New York, NY |isbn=978-0-521-49603-2 |lccn=98015176}}</ref> Summation of these vectors is done component-wise. For <math>i = 1, 2, 3, \ldots,</math> let <math display="block">\mathbf{X}_i = \begin{bmatrix} X_{i}^{(1)} \\ \vdots \\ X_{i}^{(k)} \end{bmatrix}</math> be independent random vectors. The sum of the random vectors <math>\mathbf{X}_1, \ldots, \mathbf{X}_n</math> is <math display="block">\sum_{i=1}^{n} \mathbf{X}_i = \begin{bmatrix} X_{1}^{(1)} \\ \vdots \\ X_{1}^{(k)} \end{bmatrix} + \begin{bmatrix} X_{2}^{(1)} \\ \vdots \\ X_{2}^{(k)} \end{bmatrix} + \cdots + \begin{bmatrix} X_{n}^{(1)} \\ \vdots \\ X_{n}^{(k)} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} X_{i}^{(1)} \\ \vdots \\ \sum_{i=1}^{n} X_{i}^{(k)} \end{bmatrix}</math> and their average is <math display="block">\mathbf{\bar X_n} = \begin{bmatrix} \bar X_{i}^{(1)} \\ \vdots \\ \bar X_{i}^{(k)} \end{bmatrix} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_i.</math> Therefore, <math display="block">\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left[ \mathbf{X}_i - \operatorname E \left( \mathbf{X}_i \right) \right] = \frac{1}{\sqrt{n}}\sum_{i=1}^{n} ( \mathbf{X}_i - \boldsymbol\mu ) = \sqrt{n}\left(\overline{\mathbf{X}}_n - \boldsymbol\mu\right). </math> The multivariate central limit theorem states that <math display="block">\sqrt{n}\left( \overline{\mathbf{X}}_n - \boldsymbol\mu \right) \mathrel{\overset{d}{\longrightarrow}} \mathcal{N}_k(0,\boldsymbol\Sigma),</math> where the [[covariance matrix]] <math>\boldsymbol{\Sigma}</math> is equal to <math display="block"> \boldsymbol\Sigma = \begin{bmatrix} {\operatorname{Var} \left (X_{1}^{(1)} \right)} & \operatorname{Cov} \left (X_{1}^{(1)},X_{1}^{(2)} \right) & \operatorname{Cov} \left (X_{1}^{(1)},X_{1}^{(3)} \right) & \cdots & \operatorname{Cov} \left (X_{1}^{(1)},X_{1}^{(k)} \right) \\ \operatorname{Cov} \left (X_{1}^{(2)},X_{1}^{(1)} \right) & \operatorname{Var} \left( X_{1}^{(2)} \right) & \operatorname{Cov} \left(X_{1}^{(2)},X_{1}^{(3)} \right) & \cdots & \operatorname{Cov} \left(X_{1}^{(2)},X_{1}^{(k)} \right) \\ \operatorname{Cov}\left (X_{1}^{(3)},X_{1}^{(1)} \right) & \operatorname{Cov} \left (X_{1}^{(3)},X_{1}^{(2)} \right) & \operatorname{Var} \left (X_{1}^{(3)} \right) & \cdots & \operatorname{Cov} \left (X_{1}^{(3)},X_{1}^{(k)} \right) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov} \left (X_{1}^{(k)},X_{1}^{(1)} \right) & \operatorname{Cov} \left (X_{1}^{(k)},X_{1}^{(2)} \right) & \operatorname{Cov} \left (X_{1}^{(k)},X_{1}^{(3)} \right) & \cdots & \operatorname{Var} \left (X_{1}^{(k)} \right) \\ \end{bmatrix}~.</math> The multivariate central limit theorem can be proved using the [[Cramér–Wold theorem]].<ref name="vanderVaart"/> The rate of convergence is given by the following [[Berry–Esseen theorem|Berry–Esseen]] type result: {{math theorem | name = Theorem<ref>{{cite web |first=Ryan |last=O’Donnell | author-link = Ryan O'Donnell (computer scientist) |year=2014 |title=Theorem 5.38 |url=http://www.contrib.andrew.cmu.edu/~ryanod/?p=866 |access-date=2017-10-18 |archive-date=2019-04-08 |archive-url=https://web.archive.org/web/20190408054104/http://www.contrib.andrew.cmu.edu/~ryanod/?p=866 |url-status=dead }}</ref> | math_statement = Let <math>X_1, \dots, X_n, \dots</math> be independent <math>\R^d</math>-valued random vectors, each having mean zero. Write <math>S =\sum^n_{i=1}X_i</math> and assume <math>\Sigma = \operatorname{Cov}[S]</math> is invertible. Let <math>Z \sim \mathcal{N}(0,\Sigma)</math> be a <math>d</math>-dimensional Gaussian with the same mean and same covariance matrix as <math>S</math>. Then for all convex sets {{nowrap|<math>U \subseteq \R^d</math>,}} <math display="block">\left|\mathbb{P}[S \in U] - \mathbb{P}[Z \in U]\right| \le C \, d^{1/4} \gamma~,</math> where <math>C</math> is a universal constant, {{nowrap|<math>\gamma = \sum^n_{i=1} \operatorname E \left[\left\| \Sigma^{-1/2}X_i\right\|^3_2\right]</math>,}} and <math>\|\cdot\|_2</math> denotes the Euclidean norm on {{nowrap|<math>\R^d</math>.}} }} It is unknown whether the factor <math display="inline">d^{1/4}</math> is necessary.<ref>{{cite journal |first=V. |last=Bentkus |title=A Lyapunov-type bound in <math>\R^d</math> |journal=Theory Probab. Appl. |volume=49 |year=2005 |issue=2 |pages=311–323 |doi=10.1137/S0040585X97981123 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)