Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Charm quark
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== J/psi meson (1974) ==== {{Main|J/psi meson}} In 1974, [[Samuel C. C. Ting]] was searching for charmed particles at [[Brookhaven National Laboratory]] (BNL).{{sfn|Riordan|1987|pp=[https://archive.org/details/huntingofquarktr00mich/page/297 297–298]}} His team was using an electron-pair detector.{{sfn|Ting|1977|p=239}} By the end of August, they found a peak at {{val|3.1|u=GeV/c2}} and the signal's width was less than {{val|5|u=MeV}}.{{sfn|Ting|1977|p=243}} The team was eventually convinced they had observed a massive particle and named it "J". Ting considered announcing his discovery in October 1974, but postponed the announcement due to his concern about the μ/π ratio.{{sfn|Ting|1977|p=244}} At the [[Stanford Linear Accelerator Center]] (SLAC), [[Burton Richter]]'s team performed experiments on 9–10 November 1974. They also found a high probability of interaction at {{val|3.1|u=GeV/c2}}. They called the particle "psi".{{sfn|Southworth|1976|p=385}} On 11 November 1974, Richter met Ting at the SLAC,{{sfn|Southworth|1976|pp=385–386}} and they announced their discovery.{{sfn|Rosner|1998|p=16}} Theorists immediately began to analyze the new particle.{{sfn|Riordan|1987|p=[https://archive.org/details/huntingofquarktr00mich/page/300 300]}} It was shown to have a lifetime on the scale of 10<sup>−20</sup> seconds, suggesting special characteristics.{{sfn|Southworth|1976|p=385}}{{sfn|Riordan|1987|p=300}} [[Thomas Appelquist]] and [[David Politzer]] suggested that the particle was composed of a charm quark and a charm antiquark whose [[Spin (particle physics)|spins]] were aligned in parallel. The two called this configuration "charmonium".{{sfn|Riordan|1987|p=[https://archive.org/details/huntingofquarktr00mich/page/300 300]}} Charmonium would have two forms: "orthocharmonium", where the spins of the two quarks are parallel, and "paracharmonium", where the spins align oppositely.{{sfn|Riordan|1987|p=[https://archive.org/details/huntingofquarktr00mich/page/304 304]}} Murray Gell-Mann also believed in the idea of charmonium.{{sfn|Riordan|1987|loc = p. 300, "Murray ... thinks that the charm–anticharm vector meson is more likely"}} Some other theorists, such as [[Richard Feynman]], initially thought the new particle consisted of an [[up quark]] with a charm antiquark.{{sfn|Riordan|1987|p=[https://archive.org/details/huntingofquarktr00mich/page/300 300]}} On 15 November 1974, Ting and Richter issued a press release about their discovery.{{sfn|Riordan|1987|p=[https://archive.org/details/huntingofquarktr00mich/page/301 301]}} On 21 November at the SLAC, [[SPEAR]] found a resonance of the J/psi particle at {{val|3.7|u=GeV/c2}} as [[Martin Breidenbach]] and Terence Goldman had predicted.{{sfn|Riordan|1987|p=[https://archive.org/details/huntingofquarktr00mich/page/301 301]}} This particle was called ψ′ ("psi-prime").{{sfn|Riordan|1987|p=[https://archive.org/details/huntingofquarktr00mich/page/303 303]}} In late November, Appelquist and Politzer published their paper theorizing charmonium. Glashow and Alvaro De Rujula also published a paper called "Is Bound Charm Found?", in which they used the charm quark and [[asymptotic freedom]] to explain the properties of the J/psi meson.{{sfn|Riordan|1987|p=[https://archive.org/details/huntingofquarktr00mich/page/305 305]}} Eventually, on 2 December 1974, ''[[Physical Review Letters]]'' (PRL) published the discovery papers of J and psi, by Ting{{sfn|Aubert et al.|1974}} and Richter{{sfn|Augustin et al.|1974}} respectively.{{sfn|Riordan|1987|p=[https://archive.org/details/huntingofquarktr00mich/page/305 305]}} The discovery of the psi-prime was published the following week.{{sfn|Riordan|1987|p=[https://archive.org/details/huntingofquarktr00mich/page/305 305]}} Then, on 6 January 1975, ''PRL'' published nine theoretical papers on the J/psi particle; according to Michael Riordan, five of them "promoted the charm hypothesis and its variations".{{sfn|Riordan|1987|p=[https://archive.org/details/huntingofquarktr00mich/page/306 306]}} In 1976, Ting and Richter shared the [[Nobel Prize in Physics]] for their discovery "of a heavy elementary particle of the new kind".{{sfn|Southworth|1976|p=383}} In August 1976, in ''[[The New York Times]]'', Glashow recalled his wager and commented, "John [Iliopoulos]'s wine and my hat had been saved in the nick of time".{{sfn|Glashow|1976}} At the next EMS conference, spectroscopists ate Mexican candy hats supplied by the organizers.{{sfn|Riordan|1987|p=[https://archive.org/details/huntingofquarktr00mich/page/321 321]}}{{sfn|Rosner|1998|p=18}} [[Frank Close]] wrote a ''[[Nature (journal)|Nature]]'' article titled "Iliopoulos won his bet" in the same year, saying the 18th ICHEP was "indeed dominated by that very discovery".{{sfn|Close|1976|p=537}} No-one paid off their bets to Iliopoulos.{{sfn|Riordan|1987|pp=[https://archive.org/details/huntingofquarktr00mich/page/319 319–320]}}{{sfn|Rosner|1998|p=16}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)