Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chernoff bound
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Sums of independent Bernoulli random variables == The bounds in the following sections for [[Bernoulli random variable]]s are derived by using that, for a Bernoulli random variable <math>X_i</math> with probability ''p'' of being equal to 1, :<math>\operatorname E \left[e^{t\cdot X_i} \right] = (1 - p) e^0 + p e^t = 1 + p (e^t -1) \leq e^{p (e^t - 1)}.</math> One can encounter many flavors of Chernoff bounds: the original ''additive form'' (which gives a bound on the [[Approximation error|absolute error]]) or the more practical ''multiplicative form'' (which bounds the [[Approximation error|error relative]] to the mean). === Multiplicative form (relative error) === '''Multiplicative Chernoff bound.''' Suppose {{math|''X''<sub>1</sub>, ..., ''X<sub>n</sub>''}} are [[Statistical independence|independent]] random variables taking values in {{math|{0, 1}.}} Let {{mvar|X}} denote their sum and let {{math|''μ'' {{=}} E[''X'']}} denote the sum's expected value. Then for any {{math|''δ'' > 0}}, :<math>\Pr ( X \ge (1+\delta)\mu) \leq \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^\mu.</math> A similar proof strategy can be used to show that for {{math|0 < ''δ'' < 1}} :<math>\Pr(X \le (1-\delta)\mu) \leq \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^\mu.</math> The above formula is often unwieldy in practice, so the following looser but more convenient bounds<ref name="MitzenmacherUpfal">{{cite book | url=https://books.google.com/books?id=0bAYl6d7hvkC | title=Probability and Computing: Randomized Algorithms and Probabilistic Analysis | publisher=Cambridge University Press |author1=Mitzenmacher, Michael |author2=Upfal, Eli | year=2005 | isbn=978-0-521-83540-4}}</ref> are often used, which follow from the inequality <math>\textstyle\frac{2\delta}{2+\delta} \le \log(1+\delta)</math> from [[List of logarithmic identities#Inequalities|the list of logarithmic inequalities]]: :<math>\Pr( X \ge (1+\delta)\mu)\le e^{-\delta^2\mu/(2+\delta)}, \qquad 0 \le \delta,</math> :<math>\Pr( X \le (1-\delta)\mu) \le e^{-\delta^2\mu/2}, \qquad 0 < \delta < 1,</math> :<math>\Pr( |X - \mu| \ge \delta\mu) \le 2e^{-\delta^2\mu/3}, \qquad 0 < \delta < 1.</math> Notice that the bounds are trivial for <math>\delta = 0</math>. In addition, based on the Taylor expansion for the [[Lambert W function]],<ref name="DillencourtGM"> {{cite journal | last1 = Dillencourt | first1 = Michael | last2 = Goodrich | first2 = Michael | last3 = Mitzenmacher | first3 = Michael | title = Leveraging Parameterized Chernoff Bounds for Simplified Algorithm Analyses | journal = Information Processing Letters | number = 106516 | year = 2024 | volume = 187 | doi = 10.1016/j.ipl.2024.106516 | doi-access = free }}</ref> :<math>\Pr( X \ge R)\le 2^{-xR}, \qquad x > 0, \ R \ge (2^x e -1)\mu.</math> === Additive form (absolute error) === The following theorem is due to [[Wassily Hoeffding]]<ref>{{cite journal |last1=Hoeffding |first1=W. |year=1963 |title=Probability Inequalities for Sums of Bounded Random Variables |journal=[[Journal of the American Statistical Association]] |volume=58 |issue=301 |pages=13–30 |doi=10.2307/2282952 |jstor=2282952 |url=http://repository.lib.ncsu.edu/bitstream/1840.4/2170/1/ISMS_1962_326.pdf }}</ref> and hence is called the Chernoff–Hoeffding theorem. :'''Chernoff–Hoeffding theorem.''' Suppose {{math|''X''<sub>1</sub>, ..., ''X<sub>n</sub>''}} are [[i.i.d.]] random variables, taking values in {{math|{0, 1}.}} Let {{math|''p'' {{=}} E[''X''<sub>1</sub>]}} and {{math|''ε'' > 0}}. ::<math>\begin{align} \Pr \left (\frac{1}{n} \sum X_i \geq p + \varepsilon \right ) \leq \left (\left (\frac{p}{p + \varepsilon}\right )^{p+\varepsilon} {\left (\frac{1 - p}{1-p- \varepsilon}\right )}^{1 - p- \varepsilon}\right )^n &= e^{-D(p+\varepsilon\parallel p) n} \\ \Pr \left (\frac{1}{n} \sum X_i \leq p - \varepsilon \right ) \leq \left (\left (\frac{p}{p - \varepsilon}\right )^{p-\varepsilon} {\left (\frac{1 - p}{1-p+ \varepsilon}\right )}^{1 - p+ \varepsilon}\right )^n &= e^{-D(p-\varepsilon\parallel p) n} \end{align}</math> :where ::<math> D(x\parallel y) = x \ln \frac{x}{y} + (1-x) \ln \left (\frac{1-x}{1-y} \right )</math> :is the [[Kullback–Leibler divergence]] between [[Bernoulli distribution|Bernoulli distributed]] random variables with parameters ''x'' and ''y'' respectively. If {{math|''p'' ≥ {{sfrac|1|2}},}} then <math>D(p+\varepsilon\parallel p)\ge \tfrac{\varepsilon^2}{2p(1-p)}</math> which means ::<math> \Pr\left ( \frac{1}{n}\sum X_i>p+x \right ) \leq \exp \left (-\frac{x^2n}{2p(1-p)} \right ).</math> A simpler bound follows by relaxing the theorem using {{math|''D''(''p'' + ''ε'' {{!!}} ''p'') ≥ 2''ε''<sup>2</sup>}}, which follows from the [[Convex function|convexity]] of {{math|''D''(''p'' + ''ε'' {{!!}} ''p'')}} and the fact that :<math>\frac{d^2}{d\varepsilon^2} D(p+\varepsilon\parallel p) = \frac{1}{(p+\varepsilon)(1-p-\varepsilon) } \geq 4 =\frac{d^2}{d\varepsilon^2}(2\varepsilon^2).</math> This result is a special case of [[Hoeffding's inequality]]. Sometimes, the bounds :<math> \begin{align} D( (1+x) p \parallel p) \geq \frac{1}{4} x^2 p, & & & {-\tfrac{1}{2}} \leq x \leq \tfrac{1}{2},\\[6pt] D(x \parallel y) \geq \frac{3(x-y)^2}{2(2y+x)}, \\[6pt] D(x \parallel y) \geq \frac{(x-y)^2}{2y}, & & & x \leq y,\\[6pt] D(x \parallel y) \geq \frac{(x-y)^2}{2x}, & & & x \geq y \end{align} </math> which are stronger for {{math|''p'' < {{sfrac|1|8}},}} are also used.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)