Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Companion matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Multiplication map on a simple field extension == Consider a polynomial <math>p(x)=x^n + c_{n-1}x^{n-1} + \cdots + c_1 x + c_0 </math> with coefficients in a [[Field (mathematics)|field]] <math>F</math>, and suppose <math>p(x)</math> is [[Irreducible polynomial|irreducible]] in the [[polynomial ring]] <math>F[x]</math>. Then [[Simple extension|adjoining a root]] <math>\lambda</math> of <math>p(x)</math> produces a [[field extension]] <math>K=F(\lambda) \cong F[x]/(p(x))</math>, which is also a vector space over <math>F</math> with standard basis <math>\{1,\lambda,\lambda^2,\ldots,\lambda^{n-1}\} </math>. Then the <math>F</math>-linear multiplication mapping {{ block indent | em = 1.5 | text = <math>m_{\lambda}:K\to K</math> defined by <math>m_\lambda(\alpha) = \lambda\alpha</math> }} has an ''n'' Γ ''n'' matrix <math>[m_\lambda]</math> with respect to the standard basis. Since <math>m_\lambda(\lambda^i) = \lambda^{i+1}</math> and <math>m_\lambda(\lambda^{n-1}) = \lambda^n = -c_0-\cdots-c_{n-1}\lambda^{n-1}</math>, this is the companion matrix of <math>p(x)</math>: <math display="block">[m_\lambda] = C(p).</math> Assuming this extension is [[Separable extension|separable]] (for example if <math>F</math> has [[characteristic zero]] or is a [[finite field]]), <math>p(x)</math> has distinct roots <math>\lambda_1,\ldots,\lambda_n </math> with <math>\lambda_1 = \lambda</math>, so that <math display="block">p(x)=(x-\lambda_1)\cdots (x-\lambda_n),</math> and it has [[splitting field]] <math>L = F(\lambda_1,\ldots,\lambda_n)</math>. Now <math>m_\lambda</math> is not diagonalizable over <math>F</math>; rather, we must [[Extension of scalars|extend]] it to an <math>L</math>-linear map on <math>L^n \cong L\otimes_F K</math>, a vector space over <math>L</math> with standard basis <math>\{1{\otimes} 1, \, 1{\otimes}\lambda, \, 1{\otimes}\lambda^2,\ldots,1{\otimes}\lambda^{n-1}\} </math>, containing vectors <math>w = (\beta_1,\ldots,\beta_n) = \beta_1{\otimes} 1+\cdots+\beta_n{\otimes} \lambda^{n-1} </math>. The extended mapping is defined by <math>m_\lambda(\beta\otimes\alpha) = \beta\otimes(\lambda\alpha)</math>. The matrix <math>[m_\lambda] = C(p)</math> is unchanged, but as above, it can be diagonalized by matrices with entries in <math>L</math>: <math display="block">[m_\lambda]=C(p)= V^{-1}\! D V,</math> for the diagonal matrix <math>D=\operatorname{diag}(\lambda_1,\ldots,\lambda_n)</math> and the [[Vandermonde matrix]] ''V'' corresponding to <math>\lambda_1,\ldots,\lambda_n\in L </math>. The explicit formula for the eigenvectors (the scaled column vectors of the [[Vandermonde matrix#Inverse Vandermonde matrix|inverse Vandermonde matrix]] <math>V^{-1}</math>) can be written as: <math display="block">\tilde w_i = \beta_{0i} {\otimes} 1+\beta_{1i} {\otimes} \lambda +\cdots + \beta_{(n-1)i} {\otimes} \lambda^{n-1} = \prod_{j\neq i} (1{\otimes}\lambda - \lambda_j{\otimes} 1) </math> where <math>\beta_{ij}\in L </math> are the coefficients of the scaled Lagrange polynomial <math display="block">\frac{p(x)}{x-\lambda_i} = \prod_{j\neq i} (x - \lambda_j) = \beta_{0i} + \beta_{1i} x + \cdots + \beta_{(n-1)i} x^{n-1}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)