Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Consistency
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Henkin's theorem=== Let <math>S</math> be a [[signature (logic)|set of symbols]]. Let <math>\Phi</math> be a maximally consistent set of <math>S</math>-formulas containing [[Witness (mathematics)#Henkin witnesses|witnesses]]. Define an [[equivalence relation]] <math>\sim</math> on the set of <math>S</math>-terms by <math>t_0 \sim t_1</math> if <math>\; t_0 \equiv t_1 \in \Phi</math>, where <math>\equiv</math> denotes [[First-order logic#Equality and its axioms|equality]]. Let <math>\overline t</math> denote the [[equivalence class]] of terms containing <math>t </math>; and let <math>T_\Phi := \{ \; \overline t \mid t \in T^S \} </math> where <math>T^S </math> is the set of terms based on the set of symbols <math>S</math>. Define the <math>S</math>-[[Structure (mathematical logic)|structure]] <math>\mathfrak T_\Phi </math> over <math> T_\Phi </math>, also called the '''term-structure''' corresponding to <math>\Phi</math>, by: # for each <math>n</math>-ary relation symbol <math>R \in S</math>, define <math>R^{\mathfrak T_\Phi} \overline {t_0} \ldots \overline {t_{n-1}}</math> if <math>\; R t_0 \ldots t_{n-1} \in \Phi;</math><ref>This definition is independent of the choice of <math>t_i</math> due to the substitutivity properties of <math>\equiv</math> and the maximal consistency of <math>\Phi</math>.</ref> # for each <math>n</math>-ary function symbol <math>f \in S</math>, define <math>f^{\mathfrak T_\Phi} (\overline {t_0} \ldots \overline {t_{n-1}}) := \overline {f t_0 \ldots t_{n-1}};</math> # for each constant symbol <math>c \in S</math>, define <math>c^{\mathfrak T_\Phi}:= \overline c.</math> Define a variable assignment <math>\beta_\Phi</math> by <math>\beta_\Phi (x) := \bar x</math> for each variable <math>x</math>. Let <math>\mathfrak I_\Phi := (\mathfrak T_\Phi,\beta_\Phi)</math> be the '''term [[Interpretation (logic)#First-order logic|interpretation]]''' associated with <math>\Phi</math>. Then for each <math>S</math>-formula <math>\varphi</math>: {{center|1= <math>\mathfrak I_\Phi \vDash \varphi</math> if and only if <math> \; \varphi \in \Phi.</math>{{citation needed|date=September 2018}} }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)